Filename: waits and queues.doc
3

[image: image1.png]Microsoft*

SQL Server 2005

SQL Server 2005 Waits and Queues
SQL Server Best Practices Article

Writers: Tom Davidson

Updated by: Danny Tambs

Technical Reviewer: Sanjay Mishra
Published: November 2006
Applies To: Microsoft SQL Server 2005

Copyright

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

 2006 Microsoft Corporation. All rights reserved.

Microsoft, SQL Server, Windows, Window Server are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Table of Contents

1Introduction

1Overview

1Purpose

2Audience: Who should read this paper

2Waits and Queues: A Performance Methodology

3Execution Model (simplified)

5Waiter List and Wait Types

5Dynamic Management Views (DMVs) and Functions (DMFs)

5Sys.dm_exec_requests

5Sys.dm_os_waiting_tasks

6Sys.dm_os_wait_stats

6Track_waitstats_2005 stored procedure

6Get_waitstats_2005 stored procedure

7Performance and Tuning Blue Prints

7OLTP blueprint

7Common scenarios to avoid in OLTP

12DataWarehouse blueprint

12Common Scenarios to avoid with DataWarehousing

16Typical resource bottlenecks

16Memory pressure and IO subsystem issues

16IO Stalls

17Missing or poorly formed indexes

18Largest IO queries.

18Query optimizer, query plans and statistics

19Query plan reuse and DMVs

19Query plan reuse and Performance counters

20Statement level recompilation and DMVs

21Tracking down blocking issues.

22Retrieving statements in the waiter list

22SQL Server 2005 Wait Types and correlation to other Performance information

79QUEUES (Perfmon Counters)

79PERFMON Counters, correlation, possible conclusions and actions

89Interesting PERFMON Ratios and comparisons

91Memory Issues

91Comparison of 32-bit memory architecture vs. 64-bit flat memory

9264-bit flat memory vs. higher 32-bit clock speeds

93Application Design issues

93Recommendations

93Conclusion

Introduction
This paper approaches the complex area of Microsoft® SQL Server™ performance tuning using a methodology called Waits and Queues. By using this methodology one can identify the best opportunities to improve performance, the so called “biggest bang for the buck”. These performance improvements are likely to have a significant return on the performance tuning time investment. The methodology helps identify the areas of slow performance by looking at the problem from two directions. You, or another troubleshooter, can use this to pinpoint problem areas by correlating data from two sources: Waits and Queues. An analysis of Waits indicates where SQL Server is spending lots of time waiting. In addition, the biggest waits point out the most important or relevant Queues (that is, Performance Monitor counters and other data) for this workload. The cross validation of the waits analysis enables us to eliminate all except the most significant performance counters, and provides a strong indication of pressure on specific resources.

In sum, Performance Tuning using the Waits and Queues methodology is an effective way to quickly identify and resolve application performance problems because it lets the user discover new and potentially unexpected problem areas, within applications or solutions without the typical guesswork that can accompany such work.

Overview
Performance tuning of applications and solutions has been around for many years. The performance of SQL Server 2005 database applications should be evaluated from several different perspectives. Each perspective tells a different section of the complete performance story. Together they paint a detailed performance picture of the whole and also cross validate observations in each specific perspective.

We outline a methodology that considers performance from the perspective of application, SQL Server, and correlates this to the system or resource perspective. These perspectives are the primary inputs to the waits and queues methodology.

Be aware that some bottlenecks are more easily correctable than other bottlenecks. For example, a lack of query plan reuse for ad hoc SQL can be resolved by either of two methods: (1) using sp_executesql to parameterize the ad hoc SQL or (2) by replacing ad hoc SQL with stored procedures. However, completing these application changes takes time depending on the extent of the coding and testing requirements.

Purpose

The purpose of this document is to help developers and database administrators in pinpointing areas in applications and solutions that interact with SQL Server 2005 and can benefit from improved performance. This paper outlines a best practice methodology and provides guidelines and thought processes to identify poor performing applications in addition to providing insight into improvement regimes. It should be noted that, although the concepts outlined in this paper can apply to all versions of Microsoft SQL Server, the included examples are specific to SQL Server 2005 as they use some new features not available in earlier versions.

This methodology can be put to most effective use in order to discover some of the non-obvious performance issues and help in quickly identifying the root cause. There are many papers and books on performance tuning and optimization techniques for various versions of Microsoft SQL Server. This paper demonstrates features that are specific to SQL Server 2005. It embodies knowledge from a range or sources including the SQL Server development team in addition to specialist consultants working with customers.
Audience: Who should read this paper

This paper is intended for developers, testers and database administrators (DBAs) that are involved with development or performance optimization of solutions that are based on the Microsoft SQL Server platform. This paper assumes some knowledge of SQL Server commands and a basic foundation in application performance tuning. This methodology is not intended to be a substitute for application performance testing during the development phase nor is it meant to be a substitute for other papers in this area.

Waits and Queues: A Performance Methodology

As an application, SQL Server may request system resources as it executes a user query and waits for its request to be completed. Waits are represented by SQL Server wait statistics. SQL Server 2005 tracks wait information any time that a user connection or session_id is waiting. This wait information is summarized and categorized across all connections so that a performance profile can be obtained for a given work load. Therefore, SQL Server wait types identify and categorize user (or thread) waits from an application workload or user perspective.

Queues measure system resources and utilization. The queues part of performance is represented by Performance Monitor objects and counters and other sources of information. Performance Monitor counters measure various aspects of performance such as transfer rates for disks or the processor time consumed. SQL Server object counters are exposed to Performance Monitor using the dynamic management view (DMV) sys.dm_os_performance_counters. Thus, Performance Monitor counters show performance from a resource point of view.
Associations or correlations of wait types to performance counters, and interesting performance counter ratios and comparisons round out the picture. The association of waits and queues allows one to eliminate irrelevant counters insofar as the performance bottleneck is concerned and focus effectively on the problem area. Comparisons of one counter to another provide perspective in order to draw the right conclusion. For example, say you encounter 1000 lock waits during a production workload. Does this cause a serious performance problem? To determine what role these play in overall performance you need to also consider the total number of lock requests (how many locks are requested overall vs. how many result in lock waits), the wait time or duration of the lock waits, and the time span of the test. If the total number of lock requests was 10 million, perhaps 1000 waits is insignificant. Further, if the associated lock wait time is 50 seconds overall, and the workload is over 8 hours, this too is insignificant. On the other hand, if you average a 50 second wait for EACH of the 1000 lock waits, this IS significant. In sum, associations or correlations allow us to determine relevancy to overall performance.
Application performance can be easily explained by looking at SQL Server waits and System or Resource queues. In SQL Server 2005, the dynamic management view (DMV) sys.dm_os_wait_stats provides a valuable source of wait information from an application perspective. The system or resource perspective uses Performance Monitor counters and other data sources to provide a breakdown of system resource usage according to resource queues. Taken together, the value of the application and resource perspectives used by the waits and queues methodology enables us to narrow in on the bottleneck and eliminate the irrelevant performance data.

Execution Model (simplified)

The best analogy to depict the execution model for SQL Server is the grocery store checkout line. The cashier is the CPU. The customer who is currently being checked out by the cashier is the running session. The customers who are waiting in line represent the runnable queue. If customer1 who is being checked out requires a price check on a product, customer1 must wait until the price check is completed. Meanwhile, the next in line, customer2, is immediately checked out by the cashier until the price check is completed for customer1. When the price check is completed, the cashier can resume the check out of customer1. This is the simplest illustration of the SQL Server execution model called SQLOS.
The SQL Server SQLOS uses schedulers to manage the execution of user requests. SQLOS Schedulers map to CPUs. Assuming a 4-CPU Server, there would be 4 SQLOS schedulers by default. The following diagrams depict a simplified version of execution model using a single SQLOS scheduler. The execution model in Figure 1 depicts how SQL Server user requests or sessions (denoted by SPIDs) are scheduled for execution.
Figure 1: Execution Model – Running, runnable and suspended status, Runnable Queue and Wait List

[image: image2.png]Running - 1/5QLOS ‘Waiter List (Resource Waits)

SPID 60 Running SPID 73 LK M_S.
SPID 59 NETWORKIO
SPID 56 CXPACKET

e SPID 55 RESOURCE_SEMAPHORE

(signal Waits)
SPID 51 Runnable
SPID 64 Runnable
SPID 87 Runnable
SPID 52 Runnable
SPID 93 Runnable

Figure 2 shows how SQL Server sessions rotate between the following statuses: Running (only one session can be running or executing, per scheduler), Runnable (sessions waiting for CPU), or Suspended. SPIDs with suspended statuses are placed in Waiter List until the requested resources are available. If a running session needs a data page that is not in cache, or needs a page that is blocked by another user’s lock, the session is moved to the wait list. The next SPID or session_id in the runnable queue is scheduled to start running.
Figure 2: Execution Model – How status changes affect SPIDs

[image: image3.png]@

9 - 1/5QL0S

[—=2SPID 60 Running

ompletio

Runnable Queve 1/Scheduler
(signal Waits)

S0 &4 Rumabie (3)

S50 &7 Rumnale

S0 52 Rumnale

S0 53 Rumnale

SH10 56 Runnabie +—(B)

waiter

t (Resource Wi

SPID 73 LCK_M_S
SPID 59 NETWORKIO
SPID 56 CXPACKET
SPID 55 RESOURCE_SEMAPHORE
SPID 60 10_Completion

The status change sequence of events is as follows:
1. SPID60 needs a page not in cache. Thus its status changes from Running to Suspended with wait type IO_Completion
2. SPID60 moved to Waiter List
3. SPID51 moves from Runnable queue with a runnable status to Running status, SPID64 then moves to the top of the Runnable queue
4. SPID56 is waiting for a parallel process to complete. When the parallel process is completed, the status for SPID56 changes from Suspended with wait type CXPACKET to Runnable
5. SPID56 moved to the bottom of the Runnable queue
Figure 3 depicts execution “after” session_ids (or SPIDs) have rotated clockwise due to status changes.
Figure 3: Execution Model – After status change

[image: image4.png]Running - 1/5QLOS

SPID 51 Runnable

Runnable Queue 1/Scheduler
(signal Waits)

SPID 64 Runnable

SPID 87 Runnable

SPID 52 Runnable

SPID 93 Runnable

SPID 56 Runnable

‘Waiter List (Resource Waits)

SPID 73 LCK_M_S
SPID 59 NETWORKIO.

SPID 55 RESOURCE_SEMAPHORE
SPID 60 10_Completion

The wait list means a thread has to wait for a resource. Example of resource waits includes IOs to complete, a lock to be released, a memory grant, and so on. When the session is moved to the wait list, a wait type is assigned and time is accumulated. When the resource becomes available, the thread is moved to the runnable queue and it executes as soon as the CPU is available. The clockwise rotation between running, runnable and suspended states continues until the user request is completed.
Waiter List and Wait Types

When a SQL Server 2005 session_id goes into a suspended status, a wait state is assigned indicating the reason why the session_id is suspended. The waiter list, shown in a DMV called sys.dm_os_waiting_tasks, contains currently suspended sessions and reasons for the suspension including the session_id, wait_type and the session’s accumulated wait time for this wait type in the column wait_duration_ms. If the wait is due to blocking where a lock cannot be obtained until another session releases their lock, the session holding as the lock, also known as the blocker and blocked resource are shown in the columns blocking_session_id and resource.

The current wait list can be seen in sys.dm_os_waiting_tasks. The current runnable queue is found in sys.dm_exec_requests where the status is “runnable”. The total time that is spent waiting in sys.dm_os_waiting_tasks is found in the column wait_time_ms and the time that is spent waiting for CPU in the runnable queue is called signal_wait _time_ms. Resource waits can be computed by subtracting signal_wait_time_ms from wait_time_ms. A runnable queue is unavoidable with an OLTP workload because there are large volumes of identical transactions. The key question is not the length of the runnable queue but rather how much time is spent waiting for CPU compared to the resource waits of the waiter list. The difference between resource and signal waits shows the extent of CPU pressure, if any, on overall performance. A low signal (where signal is less than 25% of the total waits) to resource wait ratio indicates there is little CPU pressure.

Dynamic Management Views (DMVs) and Functions (DMFs)

Dynamic Management Views (DMVs) and Dynamic Management Functions (DMFs) expose changing server state information that typically spans many sessions, many transactions, and many requests. Dynamic management views and functions reflect what’s going on inside the server process itself or across all sessions in the server. They are useful for diagnostics, memory and process tuning, and monitoring potentially across all sessions in the server.

Useful DMVs for performance tuning purposes include sys.dm_exec_requests, sys.dm_os_waiting_tasks, and sys.dm_os_wait_stats.

Sys.dm_exec_requests
Each SQL Server session has a unique session_id in the system DMV sys.dm_exec_requests. The stored procedure sp_who2 provides a list of these sessions in addition to other connection information such as command, resource, wait types, wait time, and status. User queries will have a session_id > 50. Common status values are ‘running’, ‘runnable’ and ‘suspended’, as described in the Execution Model discussion. A session status of ‘Sleeping’ indicates SQL Server is waiting for the next SQL Server command.
Sys.dm_os_waiting_tasks
The waiter list that shows all waiting sessions and the reasons for the waits can be found in the DMV sys.dm_os_waiting_tasks. The session_id, wait type, and associated wait time can be seen. In addition, if the session is blocked from acquiring a lock, the session holding (known as blocking) the lock as well as the blocked resource is shown in the columns blocking_session_id and resource.

Sys.dm_os_wait_stats

Sys.dm_os_wait_stats is the DMV that contains wait statistics, which are aggregated across all session ids since the last restart of SQL Server or since the last time that the wait statistics were reset manually using DBCC SQLPERF ('sys.dm_os_wait_stats', CLEAR). Resetting wait statistics can be helpful before running a test or workload.
Anytime a session_id waits for a resource, the session_id is moved to the waiter list along with an associated wait type. The DMV sys.dm_os_waiting_tasks shows the waiter list at a given moment in time. Waits for all session_ids are aggregated in sys.dm_os_wait_stats.
The stored procedures track_waitstats_2005 and get_waitstats_2005 can be used to measure the wait statistics for a given workload.
Track_waitstats_2005 stored procedure

Track_waitstats_2005 is a stored procedure that captures wait statistics from the DMV sys.dm_os_wait_stats and provides a ranking of descending order based on percentage. You can use this ranking to identify the greatest opportunities for performance improvements.

The script location is: http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/waitstats/sql05vb049.mspx
Get_waitstats_2005 stored procedure

The stored procedure get_waitstats_2005 reports the wait types that are collected by track_waitstats_2005. The get_waitstats_2005 procedure can be run during the execution of track_waitstats or after track_waitstats is completed. Running get_waitstats_2005 during the execution of track_waitstats_2005 will return a report of intermediate results while running get_waitstats_2005 at the conclusion of track_waitstats_2005 will return the final wait statistics report. The report provides a detailed picture of different wait types during the time measured, and the accumulated wait time for each.

Get_waitstats_2005 reports information about waits. Total wait time is composed of resource waits and signal waits. Resource waits are computed by subtracting signal waits from total waits. Because signal waits represent the amount of time spent waiting in the runnable queue for CPU resources, they are a measure of CPU pressure. The application blueprints identify the significance CPU pressure by comparing signal waits with total waits.

The script location is: http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/perf/sql05vb021.mspx
Performance and Tuning Blue Prints

In this white paper, we examine different types of applications, how they use resources, and how you can performance tune the applications for different workloads. An OLTP workload differs significantly from a relational data warehouse or reporting application workload and it is useful to understand these differences and how it affects the objectives for high performance.

Although resource bottlenecks differ from application to application, the performance and tuning methodology called Waits and Queues is highly accurate and the results are reproducible. Once you resolve one bottleneck, there will be another as you scale the application larger.

An OLTP workload is generally characterized by high numbers of small identical transactions. In contrast, a data warehouse or reporting application is characterized by a few large transactions, each very different. These distinctions result in very different objectives and resource usage profiles. The blueprints reflect these distinctions.

OLTP blueprint

An OLTP application is characterized by a high volume of small identical transactions, which frequently include SELECT, INSERT, UPDATE, and DELETE operations.
Unlike large data warehouse or reporting transactions where multiple CPUs work in parallel, dividing up the query into smaller pieces, the small transactions of OLTP do not require parallelism. Parallelism is multiple CPUs working in parallel, dividing up the query into smaller pieces.
While a query is divided across multiple CPUs it will run faster, but it does so by sacrificing CPU resources, as it requires merges and sorts of the smaller pieces before presenting the final result set. An OLTP transaction is small to begin with so there is no need for parallel operations that basically sacrifice CPU and memory resources for speed of execution. Plus, with the high transaction volumes of OLTP, it is important not to waste CPU resources. Parallelism is most appropriate for the big, low volume transactions of data warehouse or reporting applications.

The implications are significant for database design, resource usage and system performance.

OLTP Performance blue print objectives: There are likely to be performance and scalability problems if any of resource issues the following tables are true.
Note The values in Value column are good starting point. The actual values will vary.
Common scenarios to avoid in OLTP
Database Design
	Rule
	Description
	Value
	Source
	Problem Description

	1
	High Frequency queries having a high number of table joins.
	>4
	Sys.dm_exec_sql_text
Sys.dm_exec_cached_plans
	High frequency queries with lots of joins can be too normalized for high OLTP scalability.

	2
	Frequently updated tables having # indexes.
	>3
	Sys.indexes
sys.dm_db_operational_index_stats
	Excessive index maintenance for OLTP.

	3
	Big IOs
Table Scans
Range Scans
	>1
	Perfmon object
SQL Server Access Methods
Sys.dm_exec_query_stats
	A missing index flushes the cache.

	4
	Unused Indexes.
	Index not in Sys.dm_db_index_usage_stats. If an index is NEVER used, it will not appear in the DMV sys.dm_db_index_usage_stats
	Avoid Index maintenance for unused indexes.

CPU
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Signal Waits
	>25%
	Sys.dm_os_wait_stats
	Time in runnable queue is pure CPU wait.

	2
	Plan reuse
	<90%
	Perfmon object
SQL Server Statistics
	OLTP identical transactions should ideally have >95% plan reuse.

	3
	Parallelism: Cxpacket waits
	>5%
	Sys.dm_os_wait_stats
	Parallelism reduces OLTP throughput. CXPACKET indicates that multiple CPUs are working in parallel, dividing up the query in smaller pieces. Ordinarily a well tuned OLTP application would not parallelize unless an index is missing, there is an incomplete WHERE clause, or the query is not a true OLTP transaction.

Memory
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Page life expectancy
	<300 sec
	Perfmon object
SQL Server Buffer Manager
SQL Server Buffer Nodes
	Page life expectancy is the average number of seconds a data page stays in cache. Low values could indicate a cache flush that is caused by a big read. Pure OLTP workloads do NOT issue big reads, thus possible missing index.

	2
	Page life expectancy
	Drops by 50%
	Perfmon object
SQL Server Buffer Manager
	Page life expectancy is the average number of seconds a data page stays in cache. Low values could indicate a cache flush that is caused by a big read. Pure OLTP workloads do NOT issue big reads, thus possible missing index.

	3
	Memory Grants Pending
	>1
	Perfmon object
SQL Server Memory Manager
	Current number of processes waiting for a workspace memory grant.

	4
	SQL cache hit ratio
	<90%
	SQL cache hit ratio falls under 90% for sustained periods of time greater than 60 sec.
	It is likely that large scans have to be performed, which in turn flushes out the buffer cache.

IO
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Average Disk sec/read
	>20 ms
	Perfmon object
Physical Disk
	Reads should take 4-8 ms without any IO pressure.

	2
	Average Disk sec/write
	>20 ms
	Perfmon object
Physical Disk
	Writes (sequential) can be as fast as 1 ms for transaction log.

	3
	Big IOs
Table Scans
Range Scans
	>1
	Perfmon object
SQL Server Access Methods
	A missing index flushes the cache.

	4
	If Top 2 values for wait stats are any of the following:
ASYNCH_IO_COMPLETION
IO_COMPLETION
LOGMGR
WRITELOG
PAGEIOLATCH_x
	Top 2
	Sys.dm_os_wait_stats
	If top 2 wait_stats values include IO, there is an IO bottleneck.

	5
	Low bytes per sec.
	
	Perfmon object
Physical Disk
	

Blocking
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Block percentage
	>2%
	Sys.dm_db_index_operational_stats
	Frequency of blocks.

	2
	Block process report
	30 sec
	Sp_configure profiler
	Report of statements.

	3
	Average Row Lock Waits
	>100ms
	Sys.dm_db_index_operational_stats
	Duration of blocks.

	4
	If Top 2 values for wait stats are any of the following:
LCK_M_BU

LCK_M_IS

LCK_M_IU

LCK_M_IX

LCK_M_RIn_NL

LCK_M_RIn_S

LCK_M_RIn_U

LCK_M_RIn_X

LCK_M_RS_S

LCK_M_RS_U

LCK_M_RX_S

LCK_M_RX_U

LCK_M_RX_X

LCK_M_S

LCK_M_SCH_M

LCK_M_SCH_S

LCK_M_SIU

LCK_M_SIX

LCK_M_U

LCK_M_UIX

LCK_M_X
	Top 2
	Sys.dm_os_wait_stats
	If top 2 wait_stats values include locking, there is a blocking bottleneck.

	5
	High number of deadlocks
	>5 per hour
	Trace flag 1204 to display in the errorlog and or the profiler deadlock graph.
	If the deadlock occurs with the same participant SQL commands or operations multiple times, it is likely that there is a locking problem.

Network
	Rule
	Description
	Value
	Source
	Problem Description

	1
	High network latency coupled with an application that has many round trips to the database.
	Output queue length >2
	Perfmon object: Network Interface
	Indicates that the latency between the application server and the database is high.
Could be caused by significant network infrastructure between the application and the instance of SQL Server.

	2
	Network bandwidth is used up.
	Packets Outbound Discarded
Packets Outbound Errors
Packets Received Discarded
Packets Received Errors
	Perfmon object: Network Interface
	Dropped packets are detected.

In summary, given the high volume of identical small transactions that characterize OLTP, transactions per second and resource usage can be improved as follows:

1. Database designs usually keep the number of indexes to a functional minimum as every insert, update, and delete incurs index maintenance.

2. CPU can be reduced with plan reuse and join reduction.

3. IO performance can be reduced with good indexing, join reduction, and high page life expectancy.

4. Memory is optimal when there are no sudden drops in Page Life Expectancy.

5. Sorts can be limited with index usage. That is, a certain sort order is supported by an index that is sorted the same way, either ascending or descending.

6. Blocking can be reduced with index design and short transactions.

DataWarehouse blueprint

Compared to OLTP, data warehouse applications are characterized by low volumes of large transactions. This workload profile is exactly the opposite of OLTP. Data warehouse and reporting applications typically include big SELECT or read operations. The implications are significant for database design, resource usage, and system performance. Index fragmentation, cache turnover, and IO performance are often important factors for these workloads.
Data warehouse performance blue print objectives: There are performance problems if any of the resource issues in the following tables are true.
Note While the actual value in the value column could be debated, it is a good starting point when identifying common performance problems with DataWarehousing and Reporting applications.
Common Scenarios to avoid with DataWarehousing
Database Design
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Excessive sorting and RID lookup operations should be reduced with covered indexes.
	
	Sys.dm_exec_sql_text
Sys.dm_exec_cached_plans
	Large data warehouse can benefit from more indexes. Indexes can be used to cover queries and avoid sorting. The cost of index overhead is only paid when data is loaded.

	2
	Excessive fragmentation:
Average fragmentation_in_percent should be <25%
	>25%
	sys.dm_db _index_physical_stats
	Reducing index fragmentation through index rebuilds can benefit big range scans, common in data warehouse and Reporting scenarios.

	3
	Scans and ranges are common. Look for missing indexes
	>= 1
	Perfmon object
SQL Server Access Methods
Sys.dm_db_missing_index_group_stats
Sys.dm_db_missing_index_groups
Sys.dm_db_missing_index_details
	A missing index flushes the cache.

	4
	Unused Indexes should be avoided
	If an index is NEVER used, it will not appear in the DMV sys.dm_db_index_usage_stats
	Index maintenance for unused indexes should be avoided.

Resource issue: CPU
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Signal Waits
	> 25%
	Sys.dm_os_wait_stats
	Time in runnable queue is pure CPU wait.

	2
	Avoid plan reuse
	> 25%
	Perfmon object
SQL Server Statistics
	Data warehouse has fewer transactions than OLTP, each with significantly bigger IO. Therefore, having the correct plan is more important than reusing a plan. Unlike OLTP, data warehouse queries are not identical.

	3
	Parallelism: Cxpacket waits
	<10%
	Sys.dm_os_wait_stats
	Parallelism is desirable in data warehouse or reporting workloads.

Resource issue: Memory

	Rule
	Description
	Value
	Source
	Problem Description

	1
	Memory grants pending
	>1
	Perfmon object
SQL Server Memory Manager
	Memory grant not available for query to run. Check for
Sufficient memory and page life expectancy.

	2
	Page life expectancy
	Drops by 50%
	Perfmon object
SQL Server Buffer Manager
	Page life expectancy is the average number of seconds a data page stays in cache. Low values could indicate a cache flush that is caused by a big read.
Look for possible missing index.

Resource issue: IO
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Average Disk sec/read
	>20 ms
	Perfmon object
Physical Disk
	Reads should take 4-8ms without any IO pressure.

	2
	Average Disk sec/write
	>20 ms
	Perfmon object
Physical Disk
	Writes (sequential) can be as fast as 1 ms for transaction log.

	3
	Big scans
	>1
	Perfmon object
SQL Server Access Methods
	A missing index flushes the cache.

	4
	If Top 2 values for wait stats are any of the following:
ASYNCH_IO_COMPLETION
IO_COMPLETION
LOGMGR
WRITELOG
PAGEIOLATCH_x
	Top 2
	Sys.dm_os_wait_stats
	If top 2 wait_stats values include IO, there is an IO bottleneck

Resource issue: Blocking
	Rule
	Description
	Value
	Source
	Problem Description

	1
	Block percentage
	>2%
	Sys.dm_db_index_operational_stats
	Frequency of blocks.

	2
	Block process report
	30 sec
	Sp_configure, profiler
	Report of statements.

	3
	Average Row Lock Waits
	>100ms
	Sys.dm_db_index_operational_stats
	Duration of blocks.

	4
	If Top 2 values for wait stats are any of the following:

LCK_M_BU

LCK_M_IS

LCK_M_IU

LCK_M_IX

LCK_M_RIn_NL

LCK_M_RIn_S

LCK_M_RIn_U

LCK_M_RIn_X

LCK_M_RS_S

LCK_M_RS_U

LCK_M_RX_S

LCK_M_RX_U

LCK_M_RX_X

LCK_M_S

LCK_M_SCH_M

LCK_M_SCH_S

LCK_M_SIU

LCK_M_SIX

LCK_M_U

LCK_M_UIX

LCK_M_X
	Top 2
	Sys.dm_os_wait_stats
	If top 2 wait_stats values include IO, there is a blocking bottleneck.
Consider using row versioning to minimize shared locking blocks.

Exactly the opposite of OLTP applications, reporting or relational data warehouse applications are characterized by small numbers of (different) big transactions. These are frequently SELECT intensive operations. The implications are significant for database design, resource usage, and system performance.

Reporting and data warehouse performance objectives are as follows:

7. Data warehouse and relational data warehouse designs can have more indexes as the cost of index maintenance is paid only one time, during the batch update process.
8. Plan reuse should generally be avoided. Plan reuse may result in picking up a plan that was good for some other query (with different data distribution), but may not be good for this query. The time taken for plan generation of a large DataWarehouse query is not nearly as important as having the right plan.

9. Sorts can and should be minimized with correct index usage.

10. Missing index situations should be investigated and corrected.

11. Large IOs such as range scans benefits from on disk contiguity. Index fragmentation should be frequently monitored and kept to a minimum with index rebuilds.

12. Blocking is generally uncommon as most data warehouse transactions are read operations.

13. Parallelism is generally desirable for data warehouse applications.

Typical resource bottlenecks

Resource bottlenecks can be identified by correlating waits and queues information. Typical bottlenecks include memory pressure, IO, CPU, network, and blocking. Depending on the application, resources can be used differently and frequently have different performance bottlenecks. An analysis of the application profile helps identify objectives for database design, resource usage, and performance.

For more information about using the waits and queues methodology, see the http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/default.mspx, which includes helpful DMV scripts and samples.
Memory pressure and IO subsystem issues

Latencies caused by disk to memory transfers frequently surface as PageIOLatch waits. Memory pressure or disk IO subsystem issues can also increase PageIOLatch waits. When a user needs a page that is not in buffer cache, SQL Server has to first allocate a buffer page, and then puts a exclusive PageIOLatch_ex latch on the buffer while the page is transferred from disk to cache. Meanwhile, SQL Server puts a PageIOLatch_sh request on the buffer on behalf of the user. After the write to cache finishes, the PageIOLatch_ex latch is released. This allows the user to read the buffer page after which the PageIOLatch_sh is released. Consequently, high values for both PageIOLatch_ex and PageIOLatch_sh wait types can indicate IO subsystem issues.
Pertinent performance counters include Physical disk: disk seconds/read and Physical disk: disk seconds/write and SQL Server Buffer Manager: Page Life Expectancy. See counters for more information.

IO Stalls

The table valued dynamic management function, sys.dm_io_virtual_file_stats provides a breakdown of SQL Server reads, writes, and io_stalls for a particular database or transaction log file. IO_stalls is the total cumulative time, in milliseconds, that users waited for I/O to be completed on the file since the last restart of SQL Server.
· Select * from sys.dm_io_virtual_file_stats (dbid,file#)
· Select * from sys.dm_io_virtual_file_stats (dbid,NULL) to list all files for a database.
If IO_stalls is inordinately high for one or more files, it is possible that there is either a disk bottleneck or that high reads and writes are occurring on one drive. Average IO Waits per read or write can distinguish between consistently high IO queues or a temporary IO spike. A significantly higher average value for IO stalls on one particular drive indicates consistently high IO requests. This should be corroborated with Performance Monitor counters Physical Disk: Average Disk Seconds/Read and Average Disk Seconds/Write. The following script can also compute the Average Disk Seconds/Read and Average Disk Seconds/Write using sys.dm_io_virtual_file_stats.
---- average stalls per read, write and total

---- adding 1.0 to avoid division by zero errors

select database_id, file_id

 ,io_stall_read_ms

 ,num_of_reads

 ,cast(io_stall_read_ms/(1.0+num_of_reads) as numeric(10,1)) as 'avg_read_stall_ms'

 ,io_stall_write_ms

 ,num_of_writes

 ,cast(io_stall_write_ms/(1.0+num_of_writes) as numeric(10,1)) as 'avg_write_stall_ms'

 ,io_stall_read_ms + io_stall_write_ms as io_stalls

 ,num_of_reads + num_of_writes as total_io

 ,cast((io_stall_read_ms+io_stall_write_ms)/(1.0+num_of_reads + num_of_writes) as numeric(10,1)) as 'avg_io_stall_ms'

from sys.dm_io_virtual_file_stats(null,null)

order by avg_io_stall_ms desc

Missing or poorly formed indexes

Missing or poorly formed indexes can also cause excessive memory pressure or cache flushes. In some cases, SQL Server 2005 optimizer identifies potentially useful indexes to benefit a specific query (figure 1). The computed benefit of the index can be seen in the column avg_user_impact (percentage improvement with suggested index). It should be noted that this benefit applies to the individual query only where the maintenance cost is borne by inserts, updates, and delete operations.
The following is a list of useful indexes.

-- Potentially Useful Indexes

select d.*

 , s.avg_total_user_cost

 , s.avg_user_impact

 , s.last_user_seek

 ,s.unique_compiles

from sys.dm_db_missing_index_group_stats s

 ,sys.dm_db_missing_index_groups g

 ,sys.dm_db_missing_index_details d

where s.group_handle = g.index_group_handle

and d.index_handle = g.index_handle

order by s.avg_user_impact desc

go

--- suggested index columns and usage

declare @handle int

select @handle = d.index_handle

from sys.dm_db_missing_index_group_stats s

 ,sys.dm_db_missing_index_groups g

 ,sys.dm_db_missing_index_details d

where s.group_handle = g.index_group_handle

and d.index_handle = g.index_handle

select *

from sys.dm_db_missing_index_columns(@handle)

order by column_id

Largest IO queries.

The underlying purpose of an index suggested by sys.dm_db_missing_index_columns, is to avoid doing large amounts of IO for the query in question. Therefore, you can expect such queries to rank among the highest IO queries. To find the highest IO queries, you can use the following sample code:

--- top 50 statements by IO

SELECT TOP 50

 (qs.total_logical_reads + qs.total_logical_writes) /qs.execution_count as [Avg IO],

 substring (qt.text,qs.statement_start_offset/2,

 (case when qs.statement_end_offset = -1

 then len(convert(nvarchar(max), qt.text)) * 2

 else qs.statement_end_offset end - qs.statement_start_offset)/2)

 as query_text,

 qt.dbid,

 qt.objectid

FROM sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text (qs.sql_handle) as qt

ORDER BY [Avg IO] DESC

Query optimizer, query plans and statistics

The SQL Server 2005 Query Optimizer compiles a query plan for a user’s query. It is the job of the SQL Server Query Optimizer to determine the lowest cost strategy that will be used to retrieve or modify the data. The query plan contains the strategy or series of steps to be executed in the query plan.

For more information about SQL Server 2005 Query Optimizer, Query plans, and Statistics refer to http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx.

Query plan reuse and DMVs

High query plan reuse is important for OLTP applications where there are many identical transactions. The advantage of plan reuse means you will not incur the CPU cost of optimization for each execution of the same plan. The statements with the lowest plan reuse can be found using DMVs as follows:

--- DMV reports statements with lowest plan reuse

SELECT TOP 50

 qs.sql_handle

 ,qs.plan_handle

 ,cp.cacheobjtype

 ,cp.usecounts

 ,cp.size_in_bytes

 ,qs.statement_start_offset

 ,qs.statement_end_offset

 ,qt.dbid

 ,qt.objectid

 ,qt.text

 ,SUBSTRING(qt.text,qs.statement_start_offset/2,

 (case when qs.statement_end_offset = -1

 then len(convert(nvarchar(max), qt.text)) * 2

 else qs.statement_end_offset end -qs.statement_start_offset)/2)

 as statement

FROM sys.dm_exec_query_stats qs

cross apply sys.dm_exec_sql_text(qs.sql_handle) as qt

inner join sys.dm_exec_cached_plans as cp on qs.plan_handle=cp.plan_handle

where cp.plan_handle=qs.plan_handle

and qt.dbid = db_id() ----- put the database ID here

ORDER BY [Usecounts] ASC

Query plan reuse and Performance counters

The Perfmon object SQL Server:SQL Statistics contains counters that can be used to compute plan reuse. The idea is to compare batch requests to initial compilations. An initial compilation occurs when a plan is not found in cache. OLTP applications should have high plan reuse, > 90%.

Initial Compilations = SQL Compilations/sec – SQL Re-Compilations/sec

Plan reuse = (Batch requests/sec – Initial Compilations/sec) / Batch requests/sec

Memory pressure can cause query plans to be discarded and therefore result in reduced plan reuse. See OLTP Blueprints for memory pressure.

Statement level recompilation and DMVs

In SQL Server 2005, individual statements inside a stored procedure can be recompiled. The recompilation feature can be beneficial. For example, assume that you have a stored procedure that creates a table called MyTable, populates the table, and then joins MyTable to other tables. Because these operations occur AFTER the initial compile, the final row size and rowcount of MyTable is not known until run time. It would be possible that when MyTable is joined, it can contain 1 million rows. SQL Server tracks the statistics of MyTable and recompiles the join statement to take advantage of the new statistics for MyTable. For more information about SQL Server 2005 Optimizer and Statistics refer to http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx
Recompilation is not always a good idea; for example, when the recomplied plan is the same as the orginal plan. In these cases, you will want to identify the recompiled statements. For more information about SQL Server 2005 recompilation refer to http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx.

The following script returns statements that have been recompiled.

---- Recompilation and SQL.sql

---- (plan_generation_num) and sql statements

---- A statement has been recompiled WHEN the plan generation number is incremented

select top 25

 --sql_text.text,

 sql_handle,

 plan_generation_num,

 substring(text,qs.statement_start_offset/2,

 (case when qs.statement_end_offset = -1

 then len(convert(nvarchar(max), text)) * 2

 else qs.statement_end_offset end - qs.statement_start_offset)/2)

 as stmt_executing,

 execution_count,

 dbid,

 objectid

from sys.dm_exec_query_stats as qs

 Cross apply sys.dm_exec_sql_text(sql_handle) sql_text

where plan_generation_num >1

order by sql_handle, plan_generation_num

Tracking down blocking issues.

Long blocks can be trapped with Profiler and sp_configure. The blocked process threshold, set with sp_configure “blocked process threshold”, is the mechanism for reporting any blocks that exceed this configured number of seconds. Make sure that the threshold is not set too low as it can capture false positives. After setting the blocked process threshold using sp_configure, Profiler is then used to capture the blocker and blocked statements using the Errors and Warnings object, Blocked Process Report event.

In order to see the main objects of blocking contention, the following code lists the table and index with most blocks:

----Find Row lock waits

declare @dbid int

select @dbid = db_id()

Select dbid=database_id, objectname=object_name(s.object_id)

, indexname=i.name, i.index_id
--, partition_number

, row_lock_count, row_lock_wait_count

, [block %]=cast (100.0 * row_lock_wait_count / (1 + row_lock_count) as numeric(15,2))

, row_lock_wait_in_ms

, [avg row lock waits in ms]=cast (1.0 * row_lock_wait_in_ms / (1 + row_lock_wait_count) as numeric(15,2))

from sys.dm_db_index_operational_stats (@dbid, NULL, NULL, NULL) s,
sys.indexes i
where objectproperty(s.object_id,'IsUserTable') = 1

and i.object_id = s.object_id

and i.index_id = s.index_id

order by row_lock_wait_count desc

Notice the average block time reported in the above script is in milliseconds. You must convert the average block time to seconds in order to set the ‘blocked process threshold’ with sp_configure. This should give you a hint on how to set the sp_configure ‘blocked process threshold’ if you are not sure where to start. Remember not to set the blocked process threshold (seconds) too low as this will generate false positives. The blocked process threshold fires a trace event (Blocked Process Report) for any block that exceeds the configured number of seconds.

Retrieving statements in the waiter list

The stored procedure get_statements_in_waiter_list reports statements in the waiter list that matches the optional parameter @wait_list. If @wait_list is NULL, it lists ALL statements in the waiter list. It can be run at any time to capture statements waiting in the waiter list. For example, you can list any statement waiting for parallelism as follows:

Exec get_statements_in_waiter_list @wait_type = ‘CXPACKET’

The script location is: http://www.microsoft.com/technet/scriptcenter/scripts/sql/sql2005/waitstats/default.mspx. See section "SQL Server 2005 Wait Types" for a list of all wait types.
SQL Server 2005 Wait Types and correlation to other Performance information
	Wait Type
	Category
	In Wait
stats Table
	Description
	Correlation to Other information

	ASYNC_DISKPOOL_LOCK
	IO
	True
	Occurs when there is an attempt to synchronize parallel threads that are performing tasks such as creating or initializing a file.

SQL Server 2000: During Backup and Restore (for example, including zeroing out pages) threads written in parallel.

SQL Server 2005: no longer initializes (for example, zeros out) data files before a restore.
	Possible disk bottleneck. See the disk performance counters for confirmation.

	ASYNC_IO_COMPLETION
	IO
	True
	Occurs when a task is waiting for asynchronous I/Os to finish.

Identify disk bottlenecks, by using Perfmon Counters, Profiler, sys.dm_io_virtual_file_stats and SHOWPLAN.
Any of the following reduces these waits:

14. Adding additional IO bandwidth.
15. Balancing IO across other drives.
16. Reducing IO with appropriate indexing.

17. Check for bad query plans.
18. Check for memory pressure.
	See section titled “Memory pressure and Disk IO subsystem issues”

See PERFMON Physical Disk performance counters:

19. Disk sec/read

20. Disk sec/write

21. Disk queues

See PERFMON SQLServer:Buffer Manager performance counters for memory pressure:

22. Page Life Expectancy

23. Checkpoint pages/sec

24. Lazy writes/sec

See PERFMON SQLServer:Access Methods for correct indexing:

25. Full Scans/sec

26. Index seeks/sec

SQL Profiler can be used to identify which Transact-SQL statements do scans. Select the scans event class and events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event. The scan:completed event provides associated IO so that you can also search for high reads, writes, and duration.

Check SHOWPLAN for bad query plans

	ASYNC_NETWORK_IO
New
	Network
	True
	Occurs on network writes when the task is blocked behind the network. Verify that the client is processing data from SQL Server.
	Check network adapter bandwidth.

1 Gigabit is better than 100 megabits.

100 megabits is better than 10 megabits.

	BACKUP
New
	Backup
	True
	Occurs when a task is blocked as part of backup processing.
	

	BACKUP_CLIENTLOCK
New
	Backup
	True
	Internal Only.
	

	BACKUP_OPERATOR
New
	Backup
	True
	Occurs when a task is waiting for a tape mount. To view the tape status, query sys.dm_io_backup_tapes. If a mount operation is not pending, this wait type can indicate a hardware problem with the tape drive.
	Check backup tape drive.

	BACKUPBUFFER
New
	Backup
	True
	Occurs when a backup task is waiting for data, or is waiting for a buffer in which to store data. This type is not typical, except when a task is waiting for a tape mount.
	Check backup tape drive.

	BACKUPIO
	Backup
	True
	Occurs when a backup task is waiting for data, or is waiting for a buffer in which to store data. This type is not typical, except when a task is waiting for a tape mount.
	Check backup tape drive.

	BACKUPTHREAD
	Backup
	True
	Occurs when a task is waiting for a backup task to finish. Wait times can be long, from several minutes to several hours. If the task that is being waited on is in an I/O process, this type does not indicate a problem.
	

	BAD_PAGE_PROCESS
	Memory
	True
	Occurs when the background suspect page logger is trying to avoid running more than every five seconds which occurs when many suspect pages are encountered.
	Suspect pages are captured in the msdb database system table dbo.suspect_pages.

Suspect pages can be restored using online page level restore.

	BROKER_CONNECTION_RECEIVE_TASK
New
	Service Broker
	False
	Occurs when waiting for access to receive a message on a connection endpoint. Receive access to the endpoint is serialized.
	

	BROKER_ENDPOINT_STATE_MUTEX
New
	Service Broker
	False
	Occurs when there is contention to access the state of a service broker connection endpoint. Access to the state for changes is serialized.
	

	BROKER_EVENTHANDLER
New
	Service Broker
	False
	Occurs when a task is waiting in the primary event handler of the Service Broker. This should occur very briefly.
	

	BROKER_INIT
New
	Service Broker
	False
	Occurs when initializing Service Broker in each active database. This should rarely occur.
	

	BROKER_MASTERSTART
New
	Service Broker
	False
	Occurs when a task is waiting for the primary event handler of the Service Broker to start. This should occur very briefly.
	

	BROKER_RECEIVE_WAITFOR
New
	Service Broker
	True
	Occurs when the RECEIVE WAITFOR is waiting. This is typical if no messages are ready to be received.
	

	BROKER_REGISTERALLENDPOINTS
New
	Service Broker
	False
	Occurs during the initialization of a Service Broker connection endpoint. This should occur very briefly.
	

	BROKER_SHUTDOWN
	Service Broker
	False
	Occurs when there is a planned shutdown of Service Broker. This should occur very briefly, if at all.
	

	BROKER_TRANSMITTER
New
	Service Broker
	False
	Occurs when the Service Broker message transmitter is waiting for work to do.
	

	BUILTIN_HASHKEY_MUTEX
New
	
	True
	Can occur after instance startup when internal datastructures are initialized. Does not reoccur after datastructures have been initialized.
	

	CHECKPOINT_QUEUE
	
	False
	Occurs while the checkpoint task is waiting for the next checkpoint request.
	Checkpoint writes out dirty (for example, changed) data and log pages. Check for disk issues. See PERFMON Physical Disk performance counters

	CHKPT
	
	True
	Occurs at server startup to tell the checkpoint thread that it can start
	

	CLR_AUTO_EVENT
New
	CLR
	True
	Occurs when a task is currently performing common language runtime (CLR) execution and is waiting for a particular autoevent to be initiated.
	

	CLR_CRST
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting to enter a critical section of the task that is currently being used by another task.
	

	CLR_JOIN
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and waiting for another task to end. This wait state occurs when there is a join between tasks.
	

	CLR_MANUAL_EVENT
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting for a specific manual event to be initiated.
	

	CLR_MONITOR
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting to obtain a lock on the monitor.
	

	CLR_RWLOCK_READER
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting for a reader lock.
	

	CLR_RWLOCK_WRITER
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting for a writer lock.
	

	CLR_SEMAPHORE
New
	CLR
	True
	Occurs when a task is currently performing CLR execution and is waiting for a semaphore.
	

	CLR_TASK_START
New
	CLR
	False
	Occurs while waiting for a CLR task to complete startup.
	

	CMEMTHREAD
	Memory
	True
	Occurs when a task is waiting for a thread-safe memory object. The wait time might increase when there is contention caused by multiple tasks trying to allocate memory from the same memory object.
	The serialization makes sure that as long as the users are allocating or freeing the memory from the memory object, any other server process IDs (SPIDs) that are trying to perform the same task have to wait, and the CMEMTHREAD waittype is set when the SPIDs are waiting.
You might notice this waittype in many scenarios. However, this waittype is most frequently logged when the ad hoc query plans are being quickly inserted into a procedure cache from many different connections to the instance of SQL Server. You can address this bottleneck by limiting the data that must be inserted or removed from the procedure cache, such as explicitly parameterizing the queries so that the queries can be reused or using stored procedures where appropriate.

	CURSOR
	
	True
	Asynch Cursor thread.
	

	CURSOR_ASYNC
	
	True
	Internal only.
	

	CXPACKET
	
	True
	Occurs when trying to synchronize the query processor exchange iterator. Consider lowering the degree of parallelism if contention on this wait type becomes a problem.

Parallel process waits can sometimes occur when data is skewed. In such cases, one parallel thread may process a larger number of rows while another may process a smaller number of rows and so on.

In an OLTP environment, excessive CXPACKET waits can affect the throughput of other OLTP traffic.

In a data warehouse environment, CXPACKET waits are expected for multiple proc environments.
	Check for parallelism: sp_Configure “max degree of parallelism”.

If max degree of parallelism = 0, you might want to use one of the following options:

27. turn off parallelism completely for OLTP workloads: set max degree of parallelism to 1

28. limit parallelism by setting max degree of parallelism to some number less than the total number of CPUs. For example if you have 8 processors, set max degree of parallelism to <=4.

	DBMIRROR_DBM_EVENT
New
	DBM
	True
	Internal only.
	

	DBMIRROR_DBM_MUTEX
New
	DBM
	True
	Internal only.
	

	DBMIRROR_EVENTS_QUEUE
New
	DBM
	False
	Occurs when database mirroring waits for events to process.
	

	DBMIRROR_SEND
New
	DBM
	True
	Occurs when a task is waiting for a communications backlog at the network layer to clear to be able to send messages. Indicates that the communications layer is starting to become overloaded and affect the database mirroring data throughput.
	

	DBMIRROR_WORKER_QUEUE
New
	DBM
	False
	Indicates that the database mirroring worker task is waiting for more work.
	

	DBMIRRORING_CMD
New
	DBM
	True
	Occurs when a task is waiting for log records to be flushed to disk. This wait state is expected to be held for long periods of time.
	

	DBTABLE
	
	
	Internal only.

New Checkpoint request that is waiting for outstanding checkpoint request to complete
	See SQL Buffer Manager performance counters:

29. Page Life Expectancy

30. Checkpoint pages/sec

31. Lazy writes/sec

	DEADLOCK_ENUM_MUTEX
	Lock
	True
	Occurs when the deadlock monitor and sys.dm_os_waiting_tasks try to make sure that SQL Server is not running multiple deadlock searches at the same time.
	

	DEADLOCK_TASK_SEARCH
	Lock
	True
	Large waiting time on this resource indicates that server is executing queries in addition to sys.dm_os_waiting_tasks and these queries are blocking deadlock monitor from running deadlock search (only one query or deadlock monitor can examine task state at any moment of time). DEADLOCK_TASK_SEARCH wait type is used by deadlock monitor only, queries in addition to sys.dm_os_waiting_tasks use wait type DEADLOCK_ENUM_MUTEX.
	

	DEBUG
	
	True
	Occurs during Transact-SQL and CLR debugging for internal synchronization.
	

	DISABLE_VERSIONING
New
	
	True
	Occurs when SQL Server polls the version transaction manager to see whether the timestamp of the earliest active transaction is later than the timestamp of when the state started changing. If this is this case, all the snapshot transactions that were started before the ALTER DATABASE statement was run have finished. This wait state is used when SQL Server disables versioning by using the ALTER DATABASE statement.
	

	DISKIO_SUSPEND
	IO
	True
	Occurs when a task is waiting to access a file when an external backup is active. This is reported for each waiting user process. A count larger than five per user process can indicate that the external backup is taking too much time to finish.
	

	DLL_LOADING_MUTEX
	XML
	False
	Occurs one time while waiting for the loading of the XML parser DLL.
	

	DROPTEMP
	
	True
	Occurs between attempts to drop a temporary object if the previous try failed. The wait duration grows exponentially with each failed drop try.
	

	DTC
	DTC
	True
	Occurs when a task is waiting for an event that is used to manage state transition. This state controls when the recovery of Microsoft Distributed Transaction Coordinator (MS DTC) transactions occurs after SQL Server receives notification that the MS DTC service has become unavailable. This state also describes a task that is waiting when a commit of a MS DTC transaction is initiated by SQL Server and SQL Server is waiting for the MS DTC commit to finish.

Waiting for Distributed Transaction Coordinator
	Check transaction isolation level

	DTC_ABORT_REQUEST
	DTC
	True
	Occurs in a MS DTC worker session when the session is waiting to take ownership of a MS DTC transaction. After MS DTC owns the transaction, the session can roll back the transaction. Generally, the session waits for another session that is using the transaction
	

	DTC_RESOLVE
	DTC
	True
	Occurs when a recovery task is waiting for the master database in a cross-database transaction so that the task can query the outcome of the transaction.
	

	DTC_STATE
	DTC
	True
	Occurs when a task is waiting for an event that protects changes to the internal MS DTC global state object. The state should be held for very short periods of time.
	

	DTC_TMDOWN_REQUEST
	DTC
	True
	Occurs in a MS DTC worker session when SQL Server receives notification that the MS DTC service is not available. First the worker waits for the MS DTC recovery process to start. Then the worker waits to obtain the outcome of the distributed transaction that the worker is working on. This can continue until the connection with the MS DTC service has been reestablished.
	

	DTC_WAITFOR_OUTCOME
	DTC
	True
	Occurs when recovery tasks wait for MS DTC to become active to enable the resolution of prepared transactions.
	

	DUMP_LOG_COORDINATOR
	
	True
	Occurs when a main task is waiting for a subtask to generate data. Ordinarily, this state does not occur. A long wait indicates an unexpected blockage. The subtask should be investigated.
	

	EC
	
	
	Internal Only.
	

	EE_PMOLOCK
	
	True
	Occurs during synchronization of certain memory allocation during statement execution.
	

	EE_SPECPROC_MAP_INIT
	
	False
	Occurs during synchronization of internal procedure hash table creation. This wait can only occur during the first accesses of the hash table after the SQL Server 2005 instance started.
	

	ENABLE_VERSIONING
	
	True
	Occurs when SQL Server waits for all update transactions in this database to finish before declaring the database ready to transition to snapshot isolation enabled state. This state is used when SQL Server enables snapshot isolation by using the ALTER DATABASE statement.
	

	ERROR_REPORTING_MANAGER
	
	
	
	

	EXCHANGE
	
	True
	Occurs during synchronization in the query processor exchange iterator during parallel queries.
	Check for parallelism: sp_Configure “max degree of parallelism”.

If max degree of parallelism = 0, you might want to use one of the following options:

32. turn off parallelism completely: set max degree of parallelism to 1

33. limit parallelism by setting max degree of parallelism to some number less than the total number of CPUs. For example if you have 8 processors, set max degree of parallelism to <=4.

	EXECSYNC
	
	True
	Occurs during parallel queries while synchronizing in query processor in areas not related to the exchange iterator. Examples of such area are bitmaps, large binary objects (BLOBs) and the spool iterator. LOBs can frequently use this wait state. Bitmap and spool use should not cause contention.
	

	Failpoint
	
	True
	Internal only.
	

	FCB_REPLICA_READ
	
	True
	Occurs when the reads of a snapshot (or a temporary snapshot created by DBCC) sparse file are synchronized.
	

	FCB_REPLICA_WRITE
	
	True
	Occurs when the pushing or pulling of a page to a snapshot (or a temporary snapshot created by DBCC) sparse file are synchronized.
	

	FT_RESTART_CRAWL
	
	True
	Occurs when a full-text crawl (population) must restart from a last known good point to recover from a transient failure. The wait is for letting the worker tasks currently working on that population to complete/exit the current step.
	

	FT_RESUME_CRAWL
	
	True
	Occurs when throttled full-text crawls (population) pause to wait for existing activity to finish.
	

	HTTP_ENDPOINT_COLLCREATE
	
	True
	Internal only.
	

	HTTP_ENUMERATION
	
	True
	Occurs at startup to enumerate the HTTP endpoints to start HTTP.
	

	IMP_IMPORT_MUTEX
	
	True
	Internal only.
	

	IMPPROV_IOWAIT
	
	True
	Occurs when SQL Server waits for a bulkload I/O to finish.
	

	INDEX_USAGE_STATS_MUTEX
	
	True
	Internal only.
	

	IO_AUDIT_MUTEX
	
	True
	Occurs during synchronization of trace event buffers.
	

	IO_COMPLETION
	
	True
	Occurs while waiting for I/O operations to finish. This wait type generally represents non-data page I/Os. Data page I/O completion waits appear as PAGEIOLATCH_* waits.

Identify disk bottlenecks by using Performance Counters, Profiler, sys.dm_io_virtual_file_stats and SHOWPLAN

Any of the following reduces these waits:

34. Adding additional IO bandwidth,

35. Balancing IO across other drives

36. Reducing IO with appropriate indexing

37. Check for bad query plans
	See Disk performance counters:

38. Disk sec/read

39. Disk sec/write

40. Disk queues

See SQL Buffer Manager performance counters:

41. Page Life Expectancy

42. Checkpoint pages/sec

43. Lazy writes/sec

See SQL Access Methods for correct indexing:

44. Full Scans/sec

45. Index seeks/sec

See memory performance counter

· Page faults/sec

Refer to Io_stalls section to identify IO bottlenecks.

SQL Profiler can be used to identify which Transact-SQL statements do scan. Select the scans event class and events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event. The scan:completed event provides the associated IO so that you can also search for high reads, writes, and duration.

Check SHOWPLAN for bad query plans

	KTM_ENLISTMENT
	
	True
	Internal Only.
	

	KTM_RECOVERY_MANAGER
	
	True
	Internal Only.
	

	KTM_RECOVERY_RESOLUTION
	
	True
	Internal Only.
	

	LATCH_x
	
	
	Latches are short term light weight synchronization objects. Latches are not held for the duration of a transaction.

“Plain” latches are generally not related to IO. These latches can be used for a variety of things, but they are not used to synchronize access to buffer pages (PAGELATCH_x is used for that).

Possibly the most common case is contention on internal caches (not the buffer pool pages), especially when using heaps or text.
	If high, check PERFMON for

46. memory pressure

47. SQL Latch waits (ms)

Look for LOG and Pagelatch_UP wait types.

Latch_x waits can frequently be reduced by solving LOG and PAGELATCH_UP contention. If there is no LOG or PAGELATCH_UP contention, the only other option is to partition the table/index in question in order to create multiple caches (the caches are per-index).

	LATCH_DT
	
	True
	Occurs when waiting for a DT (destroy) latch. This does not include buffer latches or transaction mark latches. A breakdown of LATCH_* waits is available in sys.dm_os_latch_stats. Notice that sys.dm_os_latch_stats group LATCH_NL, LATCH_SH, LATCH_UP, LATCH_EX and LATCH_DT waits together.
	See LATCH_x

	LATCH_EX
	
	True
	Occurs when waiting for a EX (exclusive) latch. This does not include buffer latches or transaction mark latches. A breakdown of LATCH_* waits is available in sys.dm_os_latch_stats. Notice that sys.dm_os_latch_stats groups LATCH_NL, LATCH_SH, LATCH_UP, LATCH_EX, and LATCH_DT waits together.
	See LATCH_x

	LATCH_KP
	
	True
	Occurs when waiting for a KP (keep) latch. This does not include buffer latches or transaction mark latches. A break of latch_* waits is available in sys.dm_os_latch_stats. Notice that sys.dm_os_latch_stats groups LATCH_NL, LATCH_SH, LATCH_UP, LATCH_EX, and LATCH_DT waits together.
	See LATCH_x

	LATCH_NL
	
	True
	Internal Only.
	See LATCH_x

	LATCH_SH
	
	True
	Occurs when waiting for a SH (share) latch. This does not include buffer latches or transaction mark latches. A break of latch_* waits is available in sys.dm_os_latch_stats. Notice that sys.dm_os_latch_stats groups LATCH_NL, LATCH_SH, LATCH_UP, LATCH_EX, and LATCH_DT waits together.
	See LATCH_x

	LATCH_UP
	
	True
	Occurs when waiting for a UP (update) latch. This does not include buffer latches or transaction mark latches. A break of latch_* waits is available in sys.dm_os_latch_stats. Notice that sys.dm_os_latch_stats groups LATCH_NL, LATCH_SH, LATCH_UP, LATCH_EX, and LATCH_DT waits together.
	See LATCH_x

	LAZYWRITER_SLEEP
	
	True
	Occurs when lazy writer tasks are suspended. In a measure of the time that is spent by background tasks that are waiting. Do not consider this state when you are looking for user stalls.
	

	LCK_x
	
	
	Possible transaction management issue.

48. For shared locks, check Isolation level for transaction.

49. Keep transaction as short as possible
	See SQL Locks performance counters

· Lock wait time (ms)

Hint: check for memory pressure, which causes more physical IO, therefore prolonging the duration of transactions and locks.

	LCK_M_BU
	
	
	Occurs when a task is waiting to acquire a Bulk update lock. See the sys.dm_tran_locks topc for a lock compatibility matrix.
	See Lck_x

	LCK_M_IS
	
	
	Occurs when a task is waiting to acquire an Intend Share lock. See the sys.dm_tran_locks topc for a lock compatibility matrix.
	See Lck_x

	LCK_M_IU
	
	
	Occurs when a task is waiting to acquire an Intend Update lock. See the sys.dm_tran_locks topc for a lock compatibility matrix.
	See Lck_x

	LCK_M_IX
	
	
	Occurs when a task is waiting to acquire an Intent Exclusive lock. See the sys.dm_tran_locks topc for a lock compatibility matrix.
	See Lck_x

	LCK_M_RIn_NL
	
	
	Occurs when a task is waiting to acquire a NULL lock on the current key value and an insert range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RIn_S
	
	
	Occurs when a task is waiting to acquire a shared lock on the current key value and an insert range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RIn_U
	
	
	Occurs when a task is waiting to acquire an Update lock on the current key value and an insert range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RIn_X
	
	True
	Occurs when a task is waiting to acquire an exclusive lock on the current key value and an insert range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RS_S
	
	True
	Occurs when a task is waiting to acquire a Shared lock on the current key value and a shared range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RS_U
	
	True
	Occurs when a task is waiting to acquire a Update Range lock on the current key value and a shared range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RX_S
	
	True
	Occurs when a task is waiting to acquire a Shared lock on the current key value and an Exclusive Range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RX_U
	
	True
	Occurs when a task is waiting to acquire an Update lock on the current key value and an Exclusive range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_RX_X
	
	True
	Occurs when a task is waiting to acquire an Exclusive lock on the current key value and an Exclusive Range lock between the current and previous key. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_S
	
	True
	Occurs when a task is waiting to acquire a Shared lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_SCH_M
	
	True
	Occurs when a task is waiting to acquire a Schema Modify lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_SCH_S
	
	True
	Occurs when a task is waiting to acquire a Schema Modify lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_SIU
	
	True
	Occurs when a task is waiting to acquire a Shared With Intent Updated lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_SIX
	
	True
	Occurs when a task is waiting to acquire a Shared With Intent Exclusive lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_U
	
	True
	Occurs when a task is waiting to acquire an Update lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_UIX
	
	True
	Occurs when a task is waiting to acquire an Update With Intent Exclusive lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LCK_M_X
	
	True
	Occurs when a task is waiting to acquire an Exclusive lock. See the sys.dm_tran_locks topic for a lock compatibility matrix.
	See Lck_x

	LOGBUFFER
	
	True
	Occurs when a task is waiting for space in the log buffer to store a log record. Consistently high values can indicate that the log devices cannot keep up with the logging information being generated by the server.
	See Disk performance counters:

50. Disk sec/read

51. Disk sec/write

52. Disk queues

	LOGMGR
	
	True
	Occurs when a task is waiting for any outstanding log I/Os to finish before it shuts down the log.

Identify disk bottlenecks, by using Performance Counters, Profiler,

sys.dm_io_virtual_file_stats and SHOWPLAN

Any of the following reduces these waits:

53. Adding additional IO bandwidth,

54. Balancing IO across other drives

55. Moving / Isolating the transaction log on its own drive
	See Disk performance counters:

56. Disk sec/read

57. Disk sec/write

58. Disk queues

See SQL Buffer Manager performance counters:

59. Page Life Expectancy

60. Checkpoint pages/sec

61. Lazy writes/sec

Check Io_stall for tranlog

· select * from sys.dm_io_virtual_file_stats(dbid,file#)

	LOGMGR_FLUSH
	
	True
	Internal Only.
	

	LOGMGR_RESERVE_APPEND
	
	True
	Occurs when a task is waiting to see whether log truncation frees log space to enable the task to write a new log record. Consider increasing the size of the log file(s) for the affected database to reduce this wait.
	

	LOWFAIL_MEMMGR_QUEUE
	
	True
	Occurs while waiting for memory to be available for use.
	

	MIRROR_SEND_MESSAGE
	
	True
	Internal Only.
	

	MISCELLANEOUS
	
	True
	Catch all wait type
	

	MSQL_DQ
	
	True
	Occurs when a task is waiting for a distributed query operation to finish. This is used to detect potential Multiple Active Result Set (MARS) application deadlocks. The wait ends when the distributed query call finishes.
	

	MSQL_SYNC_PIPE
	
	True
	Internal Only.
	

	MSQL_XACT_MGR_MUTEX
	
	True
	Occurs when a task is waiting to obtain ownership of the session transaction manager to perform a session level transaction operation
	

	MSQL_XACT_MUTEX
	
	True
	Occurs during synchronization of usage of a transaction. A request must successfully acquire the mutex before it can use the transaction.
	

	MSQL_XP
	
	True
	Occurs when a task is waiting for an extended stored procedure to end. SQL Server uses this wait state to detect potential MARS application deadlocks. The wait stops when the extended stored procedure call ends.
	

	MSSEARCH
	
	True
	Occurs during Full-Text search calls. This wait ends when the full-text operation is finished. It does not indicate contention, but the duration of full-text operations.
	

	NET_WAITFOR_PACKET
	
	True
	Occurs when a connection is waiting for a network packet during a network read.
	

	OLEDB
	
	
	Occurs when SQL Server calls the Microsoft SQL Native Client OLE DB Provider. This state is not used for synchronization, instead it indicates the duration of calls to the OLE DB provider. It can also include the following:

Linked server calls including four part name calls, remote procedure calls, openquery, openrowset and so on.

Queries that access DMVs, because these are implemented as OLE DB rowset providers.

Heavy Profiler tracing
	62. Check placement of client applications including any file input read by the client and SQL Server data and log files. See PERFMON disk secs/read and disk secs/write. If disk secs/read are high, you can add IO bandwidth, balance IO across other drives, and move or isolate the database and transaction log to its own drives

63. Inspect Transact-SQL code for RPC, Distributed (Linked Server) and Full Text Search. Although SQL Server supports these type queries, they are sometimes performance bottlenecks.

64. To retrieve the SQL statement involved in OLE DB waits, refer to section “Retrieving statements in the waiter list”.

	PAGEIOLATCH_x
	
	
	Latches are short term synchronization objects. used to synchronize access to buffer pages. PageIOLatch is used for disk to memory transfers.
	If this is significant in percentage, it typically suggests disk IO subsystem issues. Check disk counters.

	PAGEIOLATCH_DT
	
	True
	Occurs when a task is waiting for a latch for a buffer that is in an I/O request. The latch request is in Destroy mode. Long waits of this kind indicate a problem with the disk subsystem.
	See PAGEIOLATCH_x

	 PAGEIOLATCH_EX
	
	True
	Occurs when a task is waiting for a latch for a buffer that is in an I/O request. The latch request is in Exclusive mode. Long waits of this kind indicate a problem with the disk subsystem.
	See PAGEIOLATCH_x

	PAGEIOLATCH_KP
	
	True
	Occurs when a task is waiting for a latch for a buffer that is in an I/O request. The latch request is in Keep mode. Long waits of this kind indicate a problem with the disk subsystem.
	See PAGEIOLATCH_x

	PAGEIOLATCH_NL
	
	True
	Internal Only.
	See PAGEIOLATCH_x

	PAGEIOLATCH_SH
	
	
	Occurs when a task is waiting for a latch for a buffer that is in an I/O request. The latch request is in Shared mode. Long waits of this kind indicate a problem with the disk subsystem.
	See PAGEIOLATCH_x

	PAGEIOLATCH_UP
	
	
	Occurs when a task is waiting for a latch for a buffer that is in an I/O request. The latch request is in Update mode. Long waits of this kind indicate a problem with the disk subsystem.
	See PAGEIOLATCH_x

	PAGELATCH_x
	
	
	Latches are short term light weight synchronization objects. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, and so on. Therefore, the duration of latches is typically sensitive to available memory.
	If this is significant in percentage, it typically indicates cache contention.

	PAGELATCH_DT
	
	True
	Occurs when a task is waiting for a latch for a buffer that is not in an I/O request. The latch request is in Destroy mode.
	See PAGELATCH_x

	PAGELATCH_EX
	
	True
	Occurs when a task is waiting for a latch for a buffer that is not in an I/O request. The latch request is in Exclusive mode.

Contention can be caused by issues other than IO or memory performance, for example, heavy concurrent inserts into the same index range can cause this kind of contention. If many inserts must be added on the same page, they are serialized using the latch. Lots of inserts into the same range can also cause page splits in the index which holds onto the latch while allocating a new page (this can take time). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate index.
	See PAGELATCH_x

	PAGELATCH_KP
	
	True
	Occurs when a task is waiting for a latch for a buffer that is not in an I/O request. The latch request is in Keep mode.
	See PAGELATCH_x

	PAGELATCH_NL
	
	True
	Internal Only.
	See PAGELATCH_x

	PAGELATCH_SH
	
	True
	Occurs when a task is waiting for a latch for a buffer that is not in an I/O request. The latch request is in Shared mode.

Contention can be caused by issues other than IO or memory performance, for example, heavy concurrent inserts into the same index range can cause this kind of contention. If many inserts must be added on the same page, they are serialized using the latch. Lots of inserts into the same range can also cause page splits in the index which holds onto the latch while allocating a new page (this can take a time). Any read accesses to the same range as the inserts would also conflict on the latches. The solution in these cases is to distribute the inserts using a more appropriate
	See PAGELATCH_x

	PAGELATCH_UP
	
	True
	Occurs when a task is waiting for a latch for a buffer that is not in an I/O request. The latch request is in Update mode.

Page latch Update is used only for allocation related pages, and contention on it is frequently a sign that more files are needed. With multiple files, allocations can be distributed across multiple files therefore reducing demand on the per-file data structures stored on these pages. The contention is not IO performance, but internal allocation contention to access the pages. Adding more spindles to a file or moving the file to a faster disk does not help, nor does adding more memory.
	See PAGELATCH_x

	PRINT_ROLLBACK_PROGRESS
	
	
	Used to wait while user processes are ended in a database that has been transitioned by using the ALTER DATABASE termination clause. For more information, see ALTER DATABASE (Transact-SQL).
	

	QNMANAGER_ACQUIRE
	
	
	Internal Only.
	

	QPJOB_KILL
	
	
	Indicates that an asynchronous automatic statistics update was canceled by a call to KILL as the update was starting to run. The terminating thread is suspended, waiting for it to start listening for KILL commands. A good value is less than one second.
	

	QPJOB_WAITFOR_ABORT
	
	
	Indicates that an asynchronous automatic statistics update was canceled by a call to KILL when it was running. The update has now completed but is suspended until the terminating thread message coordination is finished. This is an ordinary but rare state, and should be very short. A good value is less than one second.
	

	QRY_MEM_GRANT_INFO_MUTEX
	
	True
	Occurs when Query Execution memory management tries to control access to static grant information list. This state lists information about the current granted and waiting memory requests. This state is a simple access control state. There should never be a long wait for this state. If this mutex is not released, all new memory-using queries will stop responding.
	

	QUERY_NOTIFICATION_MGR_MUTEX
	
	True
	Occurs during synchronization of the garbage collection queue in the Query Notification Manager.
	

	QUERY_NOTIFICATION_SUBSCRIPTION_MUTEX
	
	True
	Occurs during state synchronization for transactions in Query Notifications.
	

	QUERY_NOTIFICATION_TABLE_MGR_MUTEX
	
	True
	Occurs during internal synchronization within the Query Notification Manager.
	

	QUERY_NOTIFICATION_UNITTEST_MUTEX
	
	True
	Internal Only.
	

	QUERY_OPTIMIZER_PRINT_MUTEX
	
	False
	Occurs during synchronization of production of query optimizer diagnostic output. This wait type only occurs if diagnostic settings have been enabled under direction of Microsoft Product Support.
	

	QUERY_TRACEOUT
	
	True
	Internal Only.
	

	RECOVER_CHANGEDB
	
	True
	Occurs during synchronization of database warm standby databases.
	

	REPL_CACHE_ACCESS
	
	True
	Occurs during synchronization on a replications article cache. During these waits the replication log reader stalls and DDL on a published table is blocked.
	

	REPL_SCHEMA_ACCESS
	
	Yes
	Occurs during synchronization on a replications article cache. During these waits the replication log reader stalls and DDL on a published table is blocked
	

	REPLICA_WRITES
	
	True
	Occurs while a task waits for page writes to database snapshots or DBCC replicas to finish.
	

	REQUEST_DISPENSER_PAUSE
	
	
	Occurs when a task is waiting for all outstanding I/O to complete so that I/O to a file can be frozen for snapshot backup.
	

	RESOURCE_QUEUE
	
	
	Occurs during synchronization on various internal resource queues.
	Synchronization object

	RESOURCE_SEMAPHORE
	
	True
	Occurs when a query memory request cannot be granted immediately because of other concurrent queries. High waits and wait times can indicate excessive number of concurrent queries or excessive memory request amount.

COMMON for DSS like workload and large queries such as hash joins; must wait for memory quota (grant) before it is executed.
	See SQL Memory Mgr performance counters

65. Memory Grants Pending

66. Memory Grants Outstanding

	RESOURCE_SEMAPHORE_MUTEX
	
	True
	Occurs while a query waits for its request for a thread reservation to be fulfilled. It also occurs when synchronizing query compile and memory grant requests
	

	RESOURCE_SEMAPHORE_QUERY_COMPILE
	
	True
	Occurs when the number of concurrent query compiles hit a throttling limit in order to avoid over-burdening the system with compiles. High waits and wait times can indicate of excessive compilations, recompiles or uncachable plans.
	

	RESOURCE_SEMAPHORE_SMALL_QUERY
	
	True
	Occurs when memory request by small query cannot be granted immediately because of other concurrent queries. Wait time should not exceed several seconds because the server transfers the request to the mainquery memory pool if it cannot grant the requested memory within a few seconds. High waits can indicate too many concurrent small queries when the main memory pool is blocked by waiting queries.
	

	SEC_DROP_TEMP_KEY
	
	True
	Occurs after failed attempt to drop a temporary security key before a retry attempt.
	

	SERVER_IDLE_CHECK
	
	True
	Occurs during synchronization of an instance of SQL Server idle status when a resource monitor is trying to declare an instance of SQL Server as idle or trying wake it up.
	

	SLEEP_BPOOL_FLUSH
	
	True
	Occurs during checkpoints when checkpoint is throttling the issuing of new I/Os in order to avoid flooding the disk subsystem.
	

	SLEEP_SYSTEMTASK
	
	True
	Occurs during start of background task while waiting for tempdb to complete startup.
	

	SLEEP_TASK
	
	True
	Occurs when a task sleeps while waiting for a generic event to occur.
	

	SNI_HTTP_ACCEPT
	
	True
	Internal Only.
	

	SNI_HTTP_WAITFOR_0_DISCON
	
	True
	Occurs during SQL Server shutdown while waiting for outstanding http connections to exit.
	

	SOAP_READ
	
	True
	Occurs when waiting for an HTTP network read to finish.
	

	SOAP_WRITE
	
	True
	Occurs when waiting for an HTTP network write to finish.
	

	SOS_CALLBACK_REMOVAL
	
	True
	Occurs when synchronization on a callback list in order to remove a callback. It is not expected for this counter to change after server initialization is completed
	

	SOS_LOCALALLOCATORLIST
	
	True
	Occurs during internal synchronization in the SQL Server memory manager.
	

	SOS_OBJECT_STORE_DESTROY_MUTEX
	
	True
	Occurs during internal synchronization in memory pools when destroying objects from the pool
	

	SOS_PROCESS_AFFINITY_MUTEX
	
	True
	Occurs during synchronizing of access to process affinity settings
	

	SOS_RESERVEDMEMBLOCKLIST
	
	True
	Occurs during internal synchronization in the SQL Server memory manager.
	

	SOS_SCHEDULER_YIELD
	
	True
	Occurs when a task voluntarily yields the scheduler for other tasks to execute. During this wait the task is waiting for its quantum to be renewed.
	

	SOS_STACKSTORE_INIT_MUTEX
	
	True
	Occurs during synchronization of internal store initialization.
	

	SOS_SYNC_TASK_ENQUEUE_EVENT
	
	True
	Occurs when a task is started in a synchronous manner. Most tasks in SQL Server 2005 are started in an asynchronous manner and control returns to the starter immediately after the task request has been put on the work queue.
	

	SOS_VIRTUALMEMORY_LOW
	
	True
	Occurs when a memory allocation waits for a resource manager to free virtual memory.
	

	SOSHOST_EVENT
	SOS
	True
	Occurs when a hosted component, such as CLR, waits for a SQL Server 2005 event synchronization object.
	

	SOSHOST_INTERNAL
	SOS
	True
	Occurs during synchronization of memory manager callbacks used by hosted components, such as CLR.
	

	SOSHOST_MUTEX
	SOS
	True
	Occurs when a hosted component, such as CLR, waits for a SQL Server 2005 mutex synchronization
	

	SOSHOST_RWLOCK
	SOS
	True
	Occurs when a hosted component, such as CLR, waits for a SQL Server 2005 reader-writer synchronization
	

	SOSHOST_SEMAPHORE
	SOS
	True
	Occurs when a hosted component, such as CLR, waits for a SQL Server 2005 semaphore synchronization object
	

	SOSHOST_SLEEP
	SOS
	True
	Occurs when a hosted task sleeps when waiting for a generic event to occur Hosted tasks are used by hosted components such as CLR.
	

	SOSHOST_TRACELOCK
	SOS
	True
	Occurs during synchronization of access to trace streams.
	

	SOSHOST_WAITFORDONE
	SOS
	True
	Occurs when a hosted component, such as CLR, waits for a task to finish.
	

	SQLCLR_APPDOMAIN
	CLR
	True
	Occurs while CLR waits for an application domain to complete startup
	

	SQLCLR_ASSEMBLY
	CLR
	True
	Occurs while waiting for access to the loaded assembly list in the sql appdomain
	

	SQLCLR_DEADLOCK_DETECTION
	CLR
	True
	Occurs while CLR waits for deadlock detection to finish.
	

	SQLCLR_QUANTUM_PUNISHMENT
	CLR
	True
	Occurs when a CLR task is throttled because it has exceeded its execution quantum. This throttling is done in order to reduce the effect of this greedy task on other tasks.
	

	SQLSORT_NORMMUTEX
	
	True
	Occurs during internal synchronization when initializing internal sorting structures.
	

	SQLSORT_SORTMUTEX
	
	True
	Occurs during internal synchronization when initializing internal sorting structures.
	

	SQLTRACE_BUFFER_FLUSH
	
	True
	Occurs when the SQL Trace flush task pauses between flushes. This wait is expected and long waits do not indicate a problem
	

	SQLTRACE_LOCK
	
	True
	Occurs during synchronization on trace buffers during a file trace.
	

	SQLTRACE_SHUTDOWN
	
	True
	Occurs when a trace shutdown waits for outstanding trace events to finish
	

	SQLTRACE_WAIT_ENTRIES
	
	True
	Occurs when a SQL Trace event queue waits for packets to arrive on the queue.
	

	SRVPROC_SHUTDOWN
	
	True
	Occurs when the shutdown process waits for internal resources to be released to shutdown cleanly.
	

	TEMPOBJ
	
	True
	Occurs when temporary object drops are synchronized. This wait is rare and only occurs if a task has requested exclusive access for temp table drops.
	

	THREADPOOL
	
	True
	Occurs when a task is waiting for a worker to run on. This can indicate that the max worker setting is too low or that batch executions are taking unusually long therefore reducing the number of worker available to satisfy other batches.
	

	TRAN_MARKLATCH_DT
	
	True
	Occurs when waiting for a destroy mode latch on a transaction mark latch. Transaction mark latches are used for synchronization of commits with marked transactions. Marked transaction enable restore to specific marked transactions.
	

	TRAN_MARKLATCH_EX
	
	True
	Occurs when waiting for an exclusive mode latch on a transaction mark latch. Transaction mark latches are used for synchronization of commits with marked transactions. Marked transaction enable restore to specific marked transactions.
	

	TRAN_MARKLATCH_KP
	
	True
	Occurs when waiting for a keep mode latch on a transaction mark latch. Transaction mark latches are used for synchronization of commits with marked transactions. Marked transactions enable restore to specific marked transactions.
	

	TRAN_MARKLATCH_NL
	
	True
	Internal Only.
	

	TRAN_MARKLATCH_SH
	
	True
	Occurs when waiting for a share mode latch on a transaction mark latch. Transaction mark latches are used for synchronization of commits with marked transactions. Marked transactions enable restore to specific marked transactions.
	

	TRAN_MARKLATCH_UP
	
	True
	Occurs when waiting for an update mode latch on a transaction mark latch. Transaction mark latches are used for synchronization of commits with marked transactions. Marked transactions enable restore to specific marked transactions.
	

	TRANSACTION_MUTEX
	
	True
	Occurs during synchronization of access to a transaction by multiple batches.
	

	UTIL_PAGE_ALLOC
	
	True
	Occurs when transaction log scans wait for memory to be available during memory pressure.
	

	VIEW_DEFINITION_MUTEX
	
	True
	Occurs during synchronization on access to cached view definitions.
	

	WAIT_FOR_RESULTS
	
	True
	Occurs when waiting for a query notification to be triggered.
	

	WAITFOR
	
	True
	Occurs because of a WaitFor Transact-SQL statement. The duration of the wait is determined by the parameters to the statement. This is a user initiated wait.
	Inspect Transact-SQL code for “waitfor delay” statement

	WORKTBL_DROP
	
	True
	Occurs when pausing before retrying after a failed worktable drop.
	

	WRITELOG
	
	
	Occurs when waiting for a log flush to finish. Common operations that cause log flushes are checkpoints and transaction commits.

Identify disk bottlenecks, by using Performance Counters, Profiler, sys.dm_io_virtual_file_stats and SHOWPLAN

Any of the following reduces these waits:

67. Adding additional IO bandwidth,

68. Balancing IO across other drives

69. Moving or Isolating the transaction log on its own drive
	See Disk performance counters:

70. Disk sec/read

71. Disk sec/write

72. Disk queues

See SQL Buffer Manager counters:

73. Page Life Expectancy

74. Checkpoint pages/sec

75. Lazy writes/sec

Check Io_stall for tranlog

· select * from sys.dm_io_virtual_file_stats(dbid,file#)

	XACT_OWN_TRANSACTION
	
	True
	Occurs when waiting to acquire ownership of a transaction.
	

	XACT_RECLAIM_SESSION
	
	True
	Occurs when waiting for the current owner of a session to release ownership of the session.
	

	XACTLOCKINFO
	
	True
	Occurs during synchronization of access to a transaction's list of locks. In addition to the transaction itself, a transactions list of locks is accessed by operations such as deadlock detection and lock migration during page splits.
	

	XACTWORKSPACE_MUTEX
	
	True
	Occurs during synchronization of defections from a transactions in addition to the transfer of database locks between enlist members of a transaction.
	

QUEUES (Perfmon Counters)

The Queues aspect of the Waits and Queues approach to performance analysis refers to PERFMON counters and other sources of information that measures resource usage. PERFMON counters provide a view of system performance from a resource perspective.

PERFMON Counters, correlation, possible conclusions and actions
Resource Component Disk
Perfmon Object: Physical Disk
	Counters to Monitor
	Description
	Possible conclusions / actions

	Current Disk Queue Length
	Sustained high queues mean your IO subsystem is not keeping up.
	Confirm IO issues with disk sec/read and disk sec/write.

Waitstats correlation:
1. IO_COMPLETION
2. ASYNC_IO_COMPLETION
3. WRITELOG
4. LOGMGR

	Average Disk Queue Length
	Average of disk queues over time. If this number is consistently high, disk sec/read and disk sec/write is also high indicating IO bandwidth issues.
	Confirm IO issues with disk sec/read and disk sec/write. Waitstats correlation:
1. IO_COMPLETION
2. ASYNC_IO_COMPLETION
3. WRITELOG
4. LOGMGR

	Disk Sec/Read
	Under typical circumstances, reads should take 4-8 ms (confirm with hardware vendor for exact read time). Sustained queues skew this number higher because disk sec/read factors in the effects of disk queues. High numbers mean your IO subsystem is not keeping up with requests
Check individual drive performance if there are multiple drives. If it is a broad problem affecting all drives, the IO subsystem is not keeping up. More drives could be useful. If there is ONE very hot drive, examine disk activity such as location of paging file, database, transaction log, and other read/write activity.
	If disk sec/read > normal read time (ask vendor for typical read time) you can consider the following options:
1. Resolve IO bottleneck by adding more drives; spreading IO across new drives if it is possible. For example, move files such as database, transaction log, other application files that are being written to or read from.
2. Check for memory pressure, see memory component.
3. Check for appropriate indexing of SQL tables. Correct indexing can save IO. Check SQL query plans looking for scans and sorts, and so on. Showplan identifies sorting steps.
4. Run SQL Profiler to identify Transact-SQL statements doing scans. In Profiler, select the scans event class and scan stopped event. Click the data column tab and add object Id. Run the trace. Save the profiler trace to a trace table, and then search for the scans event. Alternatively, you can search for high duration, reads, and writes.
Waitstats correlation:
1. IO_COMPLETION
2. ASYNC_IO_COMPLETION
3. WRITELOG
4. LOGMGR

	Disk Sec/Write
	Under typical circumstances, reads should take 4-8 ms (confirm with hardware vendor). Sustained queues skew this disk sec/write higher because this counter factors in the effects of disk queues. High numbers mean your IO subsystem is not keeping up with requests. In some SAN environments, writes can be as low as 1-2 ms.
	See disk sec/read.
High performance (significant insert, update, and delete activity) requires the transaction log to be on a separate drive from the database.

Waitstats correlation:

1. IO_COMPLETION
2. ASYNC_IO_COMPLETION
3. WRITELOG
4. LOGMGR

Resource Component: Memory / Cache
Perfmon Object: Memory
	Counters to Monitor
	Description
	Possible conclusions / actions

	Page Faults/sec
	Includes both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory.) Most processors can handle a large numbers of soft faults without significant consequences. However, hard faults that require disk access can cause significant delays. See the disk component for more information.
	Check for memory pressure (see SQL Server buffer manager), low data page hit rates, and memory grants pending.

	Pages/sec
	Number of pages read from or written to disk to resolve hard page faults.
These are hard faults that require physical IO to fetch the page.
	Compare with Page Faults/sec.
Check for memory pressure (see SQL Server buffer manager), low data page hit rates, and memory grants pending.

Resource Component: CPU
Perfmon Object: Processor
	Counters to Monitor
	Description
	Possible conclusions / actions

	% User Time
	Percentage of time SQL Server runs in User mode. Privileged mode is designed for operating system components and enables direct access to hardware and all memory.
	Make sure % user time >70%. Check task manager (taskmgr.exe) to see how much CPU sqlserver.exe is getting. If user time <70%, check on %Processor Time and % Privileged activity.

	% Privileged Time
	The operating system switches application threads to privileged mode to access operating system services
	Should be <20%. Check task manager (taskmgr.exe) to see how much CPU sqlserver.exe is getting. If % privileged time >20%, check on % Processor Time and % User Time.

	% Processor Time
	Percentage of time the CPU is executing over sample interval.
	Common uses of CPU resources:
1. Compilation and recompilation use CPU resources. Plan reuse and parameterization minimizes CPU consumption because of compilation. For more information about compilation, recompilation, parameterization, and plan reuse, see http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx
Plan reuse is where usecounts are > 1
Select cacheobjtype, objtype, usecounts, or refcounts from sys.dm_exec_cached_plans and order by usecounts
Matches to PERFMON counters:
1. System: Processor Queue length
2. SQL Statistics: Compilations/sec
3. SQL Statistics: Re-Compilations/sec
4. SQL Statistics: Requests/sec
If both of the following are true, you are CPU bound:
1. Proc time >85% on average
2. Context switches (see system object) >20K / sec
Light weight pooling can provide a 15% boost. Light weight pooling (also known as fiber mode) divides a thread into 10 fibers. Overhead per fiber is less than that of individual threads.

	% Idle Time
	Percentage of time CPU is idle over sample interval
	

	Interrupts/sec
	Interrupts/sec is the average rate, in incidents per second, at which the processor received and serviced hardware interrupts.
	Correlate with other perfmon counters such as IO, Network.

Resource Component Thread
Perfmon Object: Process
	Counters to Monitor
	Description
	Possible conclusions / actions

	Page Faults/sec
	This counter includes both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory.) Most processors can handle large numbers of soft faults without significant consequences. However, hard faults, which require disk access, can cause significant delays. See the disk component for more information.
	Check for memory pressure (see SQL Server buffer manager), low data page hit rates, and memory grants pending, page life expectancy.

Resource Component: System
Perfmon Object: System
	Counters to Monitor
	Description
	Possible conclusions / actions

	Processor Queue Length
	
	Number of threads waiting to be scheduled for CPU time. Some common uses of CPU resources that can be avoided:
1. Unnecessary compilation and recompilation. Parameterization and plan reuse would reduce CPU consumption. See http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx
2. memory pressure
3. lack of appropriate indexing

	Context Switches/sec
	
	

Resource Component: SQL Server
Perfmon Object: SQLServer:Access Method
	Counters to Monitor
	Description
	Possible conclusions / actions

	Forwarded Records/sec
	Number of records fetched through forwarded record pointers.
Tables without a clustered index. If you start with a short row, and update the row creating a wider row, the row might not fit on the data page. A pointer is put in its location and the row is forwarded to another page.
	Look at code to determine where the short row is inserted followed by an update.
Can be avoided by:
1. Using Default values (so that an update does not result in a longer row that is the root cause of forwarded records).
2. Using Char instead of varchar (fixes length so that an update does not result in a longer row

	Full Scan/sec
	The entire table or index is scanned. Scans can cause excessive IO if an index would be useful.
	SQL Profiler can be used to identify which Transact-SQL statements do scan. Select the scans event class and events scan:started and scan:completed. Include the object Id data column. Save the profiler trace to a trace table, and then search for the scans event.
The scan:completed event provides associated IO so that you can also search for high reads, writes, and duration.

	Index Searches/
sec
	Number of index searches. Index searches are used to start range scans, single index record fetches, and to reposition in an index.
	Compare to Full Scan/sec. You want to see high values for index searches.

	Page Splits/sec
	Number of page splits occurring as the result of index pages overflowing. Typically associated with leaf pages of clustered indexes and non-clustered indexes.
	Page splits are extra IO overhead that results from random inserts.
When there is no room on a data page, and the row must be inserted on the page (because of index order), SQL splits the page by inserting a new row and moving the rests of the rows to a new page.
Compare to Disk: page sec/write. If this is very high, you might want to reorganize the indexes on the tables causing the page splits, to reduce page splits temporarily. Fillfactor can be used to leave space for inserts.

Resource Component: SQL Server
Perfmon Object: SQLServer:Memory Mgr
	Counters to Monitor
	Description
	Possible conclusions / actions

	Memory Grants Pending
	Memory resources are required for each user request. If sufficient memory is not available, the user waits until there is adequate memory for the query to run.
	Compare with Memory grants outstanding. If grants pending increases, you can do the following:
1. add more memory to SQL Server
2. add more physical memory to the box.
3. check for memory pressure. See and correct indexing if you experience “out of memory” conditions.
Correlate to Waittype
1. RESOURCE_SEMAPHORE

Resource Component: SQL Server
Perfmon Object: SQLServer:Buffer Manager
	Counters to Monitor
	Description
	Possible conclusions / actions

	Buffer cache hit ratio
	Percentage of time that the pages requested are already in cache
	Check for memory pressure. See Checkpoint pages/sec, Lazy writes/sec and Page life expectancy.

	Checkpoint pages/sec
	Pages written to disk during the checkpoint process. This frees the SQL cache
	Memory pressure is indicated if this counter is high together with high lazy writes/sec and low page life expectancy (<300 seconds)

	Lazy writes/sec
	Pages written to disk by the lazy writer, This frees the SQL cache
	Memory pressure is indicated if this counter is high together with high lazy writes/sec and low page life expectancy (<300 seconds)

	Page life expectancy
	Time in seconds the data pages, on average, stay in SQL cache. Low page life <300 can indicate (1) SQL cache is cold, (2) memory problems or (3) missing indexes. Correlate to Lazy writes/sec and Checkpoint pages/sec
	Memory pressure is indicated if this counter is low (<300) together with high lazy writes/sec and checkpoint pages/sec.
Check for missing indexes and bad query plans (scans in profiler)
Check for high page faults/sec.

	Readahead pages/sec
	If there are memory shortages, a cold cache, or low hit rates, SQL Server might use worker threads to readahead (bring in pages beforehand) to raise hit rates. By itself readahead is not a problem unless users are flushing each other’s pages consistently.
	Correlate to counters for SQL buffer mgr: buffer cache hit ratio, page life expectancy, lazy writes, and checkpoint pages for memory pressure.
Check for appropriate indexing and bad query plans (scans in profiler)

Resource Component: SQL Server
Perfmon Object: SQLServer:Plan Cache
	Counters to Monitor
	Description
	Possible conclusions / actions

	Cache Hit Ratio
	Percentage of time that the procedure plan pages are already in cache. For example,. procedure cache hits. That is, how frequently a compiled procedure is found in the procedure cache (therefore avoiding the need to recompile).
	Check for memory pressure. See Checkpoint pages/sec, Lazy writes/sec and Page life expectancy.
See SQL Profiler: Stored Procedure: CacheHit, CacheMiss, and CacheInsert to see what stored procedure query plans are already in cache (Hit) vs. those not in cache (Miss,Insert)
Check for appropriate plan reuse. See section “Query Plan Reuse”. It is frequently desirable for query plans to be reused for similar SQL although not always.
See SQL Statistics: Compilations/sec for discussion of plan reuse.
If there is memory pressure, plans are discarded to make room for other data or procedure plans.

Resource Component: SQL Server
Perfmon Object: SQLServer:Databases
	Counters to Monitor
	Description
	Possible conclusions / actions

	Log Flush Wait Time
	Waiting for transaction log writes (ms)
	See disk performance counters
Check transaction log file sys.dm_io_virtual_file_stats(dbid, file#) for Io_stall (waits in ms)

	Log Flush Waits/sec
	This is the number of commits waiting on a log flush.
	See disk performance counters, sys.dm_io_virtual_file_stats for Io_stall.

	Log Growths
	Microsoft Windows® automatically extends the transaction log to accommodate insert, update, and delete activity.
	Generally, growths of the transaction log temporarily freezes writes to the transaction log when Windows extends the transaction log file. Check to see that the extend increment is large enough. If not, performance will decrease when the log is extending frequently.

	Transactions /sec
	SQL Server transactions per second
	

Resource Component: SQL Server
Perfmon Object: SQLServer:General Statistics
	Counters to Monitor
	Description
	Possible conclusions / actions

	Logins/sec
	Number of logins per second
	User connections

	Logout/sec
	Number of logouts per second
	

	User connections
	Number of user connections
	

Resource Component: SQL Server
Perfmon Object: SQLServer:Latches
	Counters to Monitor
	Description
	Possible conclusions / actions

	Average Latch Wait Time(ms)
	Latches are short term light weight synchronization object. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, and so on.
	If high, check PERFMON DISK and MEMORY objects for
1. IO bottlenecks
2. memory pressure
Typically reduced with more memory or IO capacity

	Latch Waits/sec
	See Average Latch Wait Time(ms)
	

	Total Latch Wait Time(ms)
	Short term light weight synchronization object. Latches are not held for the duration of a transaction. Typical latching operations during row transfers to memory, controlling modifications to row offset table, and so on.
	If high, check PERFMON DISK and MEMORY objects for
1. IO bottlenecks
2. memory pressure
Typically reduced with more memory or IO capacity

Resource Component: SQL Server
Perfmon Object: SQLServer:Locks
	Counters to Monitor
	Description
	Possible conclusions / actions

	Average Wait Time(ms)
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, therefore prolonging the duration of transactions and locks.

	Lock Wait Time(ms)
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, therefore prolonging the duration of transactions and locks

	Lock Waits/sec
	Transactions should be as short as possible to limit the blocking of other users.
	Hint: check for memory pressure, which causes more physical IO, therefore prolonging the duration of transactions and locks

Resource Component: SQL Server
Perfmon Object: SQLServer:SQL Statistics
	Counters to Monitor / Description
	Possible conclusions / actions

	SQL Compilations/sec
	Before a SQL statement can be executed, the query optimizer must have created a query plan. A query plan consists of steps that return the results for a given SQL statement.
For more information about SQL Server 2005 Optimizer and Statistics refer to http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx
Compilations/sec Includes both initial compiles and subsequent recompiles. Compilation and recompilation are CPU intensive operations.
Unnecessary compilation can sometimes be avoided with query plan reuse. Check for appropriate plan reuse. See section “Query Plan Reuse”. It is frequently desirable for query plans to be reused for similar SQL although not always.
Parameterization is important for plan reuse. In addition, some types of recompilation can be avoided. See the SQL Server 2005 recompilation paper for more information: http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx
To obtain initial compilations only, you must subtract recompilations/sec from compilations/sec.
Compare to batch requests/sec to see extent of compilation.

	SQL Re-Compilations/sec
	Only contains recompiles. SQL Profiler can provide information about what processors are recompiling, what statement, and the reason for recompilation. In Profiler, select the stored procedure event class and SP:recompilation event, and include the data column eventsubclass. Review the trace searching for eventsubclass values 1 through 6. The previous statements caused the recompilation. For more information about recompilation, see http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx

	Batch Requests/sec
	Total batch requests should be compared with compilations/sec

	Auto-Param Attempts/sec
	Auto-param tries should be compared to failed auto-params/sec. Appropriate parameterization is important for plan reuse. In some cases, Sp_executeSQL could be used with ad hoc SQL. For more information about recompilation, see http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx

	Failed Auto-Params/sec
	Auto-param tries should be compared to failed auto-params/sec. Appropriate parameterization is important for plan reuse. In some cases, Sp_executeSQL could be used with ad hoc SQL. For more information about recompilation, see http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx

Interesting PERFMON Ratios and comparisons

Some counters in PERFMON have to be compared to other counters to draw the appropriate conclusion Although the following ratios and comparisons are not exhaustive, they nevertheless point you in the right direction.
76. Batch requests/sec versus SQL Compilations/sec. Plan reuse is desirable for OLTP workloads because of its tendency toward high volumes of identical transactions. See section titled "Plan reuse and Performance Counters". The worst case is when compilations are very high compared with batch requests as this could be a case of memory pressure where query plans are discarded quickly to make room for other activity. Another possibility is lack of parameterization, which is important for ad hoc SQL plan reuse. Parameterization is where variables are used instead of literal values. sp_executeSQL can be used to parameterize ad hoc SQL.
Perfmon counters are SQLServer:SQL Statistcs:Batch Requests/sec and SQLServer:SQL Statistics:SQL Compilations/sec
For more information about SQL Server 2005 Optimizer and Statistics see http://www.microsoft.com/technet/prodtechnol/sql/2005/qrystats.mspx
77. SQL Compilations/sec versus SQL Re-Compilations/sec. SQL Compilations/sec include all compilations (initial compiles and recompiles) but SQL Re-Compilations/sec only includes recompiles (excludes initial compiles). See section titled "Plan reuse and Performance Counters". If initial compiles are low (SQL Compilations – SQL Re-Compilations) compared to SQL recompilations, there is a probable recompilation problem. To find the actual statements that are recompiled, see section titled “Query Plans and DMVs".
Perfmon counters are SQLServer:SQL Statistcs: SQL Compilations/sec and SQLServer:SQL Statistics:SQL Re-Compilations/sec.
For more information, see the SQL Server 2005 recompilation paper: http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx
78. Kernel CPU versus User CPU. If (Kernel CPU/ User CPU) > .25, this can indicate a network, disk driver, or hardware issue. Network and Disk IO is serviced in kernel mode. SQL is serviced in user mode. Look at Task Manager.
Perfmon counters are Processor:%Processor Time, Processor:%User time, and Processor:%Interrupt time.
79. Context switches per second. This value should remain under 20000. Values greater than this threshold indicate too much context switching. Values greater than 50000 indicate that the server might be spending more CPU clock cycles context switching threads instead of actively running given threads. This kind of scenario was visible on Microsoft Windows 2000 Server. In Windows Server® 2003 it is less likely but can still occur.

80. Disk Queue Length versus Disk sec/Transfer. As disk queue length increases, so does disk sec/transfer.
Performance monitor counters are PhysicalDisk:Avg Disk Queue Length and PhysicalDisk:Avg Disk sec/Transfer.
81. Page life expectancy, checkpoint pages/sec, lazy writes/sec comparison. Memory pressure is indicated with low page life expectancy, and high checkpoint pages and lazy writes/sec. Memory pressure, which adversely affects performance, can be lessened one or more of the following

a. Adding more memory to the box

b. Increasing SQL memory

c. Avoiding table and index scans with appropriate indexing

82. SQL buffer cache hit ratio. If this is consistently under 90% it indicates that the buffer cache is getting flushed.

83. Signal waits and the runnable queue comparison. Basics of execution model (simplified) is as follows.
d. If a session id is running and must lock a resource that is unavailable at the time, it moves to the resource wait list (time T0).

e. A signal indicates resource available, SPID moves to runnable queue at time T1.

f. SPID waits running status until T2 as CPU goes through the runnable queue in order of arrival

g. The resource wait time is the actual time waiting for the resource to be available, Time T0 to T1.

h. The signal wait time spent in the runnable queue. It starts from the time the resource is available (T1) to the point in which the process is running again at T2. Therefore, signal waits are T2-T1.

The larger the value T1 – T0 = means that the particular resource availability is tending to be more limited. If it is a lock that is waiting then blocking could likely be occurring. If it is IO that is waiting then the disk subsystem is likely to be bottlenecking.

T2 – T1 indicates CPU pressure. This indicates that as the value increases the time that is spent in the runnable queue also increases. Session_ids in the runnable queue are waiting only for CPU resource. If this is say >25%, there is a CPU bottleneck.

i. Key questions: Are Resource and Signal time significant?

· Highest waits indicate the bottleneck you need to solve for scalability

· Generally if you have LOW% SIGNAL WAITS, the CPU is handling the workload. For example, session_ids move through runnable queue quickly

· HIGH % SIGNAL WAITS indicates CPU cannot keep up, significant time for SPIDs to move up the runnable queue to reach running status
84. Network: Current bandwidth, bytes total/sec, packets/sec. Network bandwidth issues should be corroborated with bytes total/sec. [Network interface: bytes total/sec] / [Network interface: Current Bandwidth] > .6, possible network bottleneck.

85. Page Faults/sec versus Pages/sec. Page faults include both hard faults (those that require disk access) and soft faults (where the faulted page is found elsewhere in physical memory). Most processors can handle large numbers of soft faults without significant consequences. However, hard faults, which require disk access, can cause significant delays. Pages/sec represents the number of hard page faults that require physical IO to bring the pages into memory.

Memory Issues

The SQL Server relational database system uses memory for many different purposes internally. For a complete discussion of the memory uses in SQL Server, see http://www.winnetmag.com/Article/ArticleID/43419/43419.html.

To summarize, the main uses are as follows:

86. Database page cache, which is used to cache database (table / index) pages

87. Query Workspace memory, which is used by memory intensive query operations such as Hash and Sort.

88. Plan cache, which is used to cache query plans so that they can be reused

89. Other; such as locks, connection memory, thread stacks, memory for utilities such as backup/restore and so on.

90. Memory used by other components linked into the SQL Server process such as XPs, OLE-DB providers and so on. The memory is typically referred to as the MemToLeave memory area because SQL Server refrains from allocating this memory so that these other components linked into the process can do so.

Comparison of 32-bit memory architecture vs. 64-bit flat memory

Of these, only the first use, database page cache, can use AWE memory on 32-bit systems. The rest of the uses require virtual memory, therefore they are limited to 2GB (or 3GB with the /3GB switch in boot.ini) on 32-bit systems. If an application stresses one or more of these other uses of memory in SQL Server to a point beyond what can be handled by the 32-bit virtual memory limits, you might consider the 64-bit option. To determine whether this is the case, see the following for some steps that you might want to consider:
91. Overall Server Memory: Look at counters under SQL Server:Memory Manager. If Total Server Memory is well below Target Server Memory at steady state, it tells you that the server is not experiencing memory pressure. In this case, you likely have no performance-related reason to consider SS64. Otherwise, you need to look further into the cause of memory pressure by following the following steps. Of course, if you do have memory pressure, you might already be using additional memory in SQL Server by enabling AWE. In this case, SQL Server allocates Max Server Memory at startup and therefore Total Server Memory does not change dynamically. Additionally in this case, follow these steps to tell if there continues to be memory pressure.

92. Also, examining the buffer cache hit ratio would be good. Typically one of the first signs of memory problems.

93. Query Workspace Memory: Look at counters under SQL Server:Memory Manager. Look at Memory Grants Outstanding and Memory Grants Pending. If you see a long queue of Pending grants compared to Outstanding grants, there is likely memory pressure because of query workspace memory. You can confirm this by checking the Granted Workspace Memory (KB) counter that tells you how much memory has currently been granted to running queries. If there is memory pressure because of workspace memory, this value should be at least 25% of the virtual memory available to SQL Server. If the memory pressure is severe, the server might even return errors such as 701 or 8645. If this is the case, this might be a good reason to consider using SS64.

94. Plan Cache: The counter SQL Server:Buffer Manager:Procedure Cache Pages captures the total number of pages in the plan cache. If this number is a significant fraction (typically, greater than 25 percent) of the total number of pages in the buffer pool, the application is plan cache intensive. However, this by itself is insufficient to consider a move to SS64. If the plan cache is large because it is full of plans that are rarely reused, moving to SS64 does not yield any benefits (and in fact might make the situation worse because of the larger size of plan cache as described previously). To determine what kinds of plan are in the plan cache see the section titled “Query Plan Reuse” to see whether these plans are being reused, examine the usecounts column. If the plan cache is full of plans that are being reused and yet there is memory pressure, this indicates the application would benefit from more virtual memory and therefore SS64 might be a good option to consider.

95. Memory pressure on MemToLeave, for example, because of XPs or OLE-DB providers. Typically, if you have pressure in the MemToLeave area, you might see errors such as 7399, 17802, or 17803. In these cases, you might have already considered altering the –g startup parameter for SQL Server to increase the MemToLeave value. This in turn might translate to some of the other kinds of memory pressure described here.

96. High CPU cost of AWE memory: In some cases, even if the memory use consists primarily of database page cache, the CPU cost of mapping and un-mapping database pages using AWE might become too expensive, as evidenced by high kernel CPU time. This is especially true when the number of CPUs in the system is 8 or more and/or when the size of physical memory exceeds 32GB on your 32-bit system. This is another point at which you might consider use of a 64-bit system.

64-bit flat memory vs. higher 32-bit clock speeds

As seen earlier, there are cases where memory pressure is genuine and SS64 might be an attractive option in those cases. However, even in these cases the choice of a 64-bit system over 32-bit systems is not straight-forward. Clock speeds on Itanium-based 64-bit systems are much lower than on Xeon-based 32-bit systems. The Itanium’s ability to execute multiple instructions at the same time does compensate for this to a degree. However, if your application is CPU-heavy, you might find you need as many or more processors on a 64-bit system as on the comparable 32-bit system to handle the same workload. It is always recommended that the relative performance of the two choices be verified through a prototype or proof of concept to verify that the 64-bit platform would be a good investment.
Application Design issues

There are application design considerations resulting from the Waits and Queues methodology. The following table describes some of the application design implications.

	Observation
	Application issue
	Possible remedies

	High IO waits
	Database design

Memory pressure
	Bad query plans resulting from inappropriate indexing.

Add correct indexes to minimize IO.

Add more memory

	High CPU use
	Memory pressure

Plan reuse

Parameterization
	Check for correct plan reuse, parameterization, recompilation, see http://www.microsoft.com/technet/prodtechnol/sql/2005/recomp.mspx

	High blocking / locking
	Transaction management
	Redo transaction management

Use correct transaction isolation levels

Recommendations

The Waits and Queues methodology is recommended as the most effective technique for identifying and resolving performance issues. It focuses on the best opportunities to improve performance, the so called “biggest bang for the buck”. These performance improvements are likely to have a significant return on the performance tuning time investment.
Conclusion

There are two complimentary sources of performance information for SQL Server. Wait types are an invaluable clue in analyzing overall system performance from an application point of view. Wait types provide a view of system performance from a SQL thread standpoint while Performance Monitor provides a view of system performance from a resource standpoint.

Wait statistics should be corroborated or associated with resource counters in Performance Monitor. For example, a high SQL Server wait types signal the need for additional PERFMON investigation of underlying resources such as processor, IO subsystem, network and so on. Together, these associations or correlations of wait types to performance counters, and other related counter ratios provide a broad picture of application performance.

In come cases, the experienced performance expert must look beyond the symptom to find the root problem. Although not exhaustive, the correlated performance information, possible conclusions and actions, and interesting ratios and comparisons sections shed light on actual root problems, given the symptoms. The waits and queues methodology presented here, identify system bottlenecks and propose additional corroboration and conclusions, where appropriate.

In sum, the performance methodology of waits and queues draws on the available performance information that consists of waitstats, PERFMON counters, and correlated information, to provide a broad profile of application performance. It is an invaluable tool in pinpointing bottlenecks and fixing performance problems.

For more information:

http://www.microsoft.com/technet/prodtechnol/sql/bestpractice/default.mspx
Did this paper help you? Please give us your feedback. On a scale of 1 (poor) to 5 (excellent), how would you rate this paper?!href(mailto: sqlfback@microsoft.com?subject=Feedback: [Paper Title])
[image: image5.png]

