How To: Automate Continuous SQLServer Activity with Stored Procedures and Powershell Jobs
by Kendra Littleon March 2, 2011
The Goal[image: http://www.littlekendra.com/wp-content/uploads/2011/03/Automation.gif]
It’s often useful to be able to run a bunch of stored procedures in the background over a period of time against a test instance.
This can be nice for:
· Demos and presentations.
· Populating DMVs with data you can slice and dice.
· Learning to use things like extended events and server side trace (which are much more interesting with something to look at).
· Testing a variety of automation scripts.
This post shows you how to create several stored procedures for AdventureWorks2008R2 which will provide different result sets and have slightly different run times when run with a variety of parameters– in this case, individual letters of the alphabet.
You can then run PowerShell commands which start jobs in the background. Each job runs a stored procedure and loops through all letters of the alphabet, providing each one as a parameter. You can set the job to do that loop a configurable amount of times (the commands are set to 100). In other words, as given, each stored procedure will be run 2600 times. Since you’re running multiple jobs and they’re all going asynchronously in their own threads, you’ll have a variety of commands trying to run at the same time.
Optional: you can start the PowerShell jobs under different credentials if you need.
Alternatives: In the past, I’ve typically done things like this with T-SQL loops (often with dynamic SQL) and multiple Management Studio windows. This works OK, but it’s a little time consuming to open each window, paste everything in (or open multiple files), and start them all up. I find it much more convenient now to use scripts.
Step 1: Create Stored Procedures with a single alphabet-based parameter
Let’s get one thing clear: these procedures aren’t designed to run optimally, and they aren’t coded nicely.
You’ll notice these procedures have all sorts of problems. And that’s by design– my goals are for testing things around these, so it’s really a little better for me if they don’t play perfectly nice.
In other words, these sure ain’t for production. [image: :)]
view source

print?
	01
	/****************

	02
	Jump in the kiddie pool

	03
	********************/

	04
	USE AdventureWorks2008R2;

	05
	go

	06
	

	07
	/****************

	08
	CREATE THE SCHEMA

	09
	********************/

	10
	IF SCHEMA_ID(N'test') IS NULL

	11
	EXEC sp_executesql N'CREATE SCHEMA test AUTHORIZATION dbo'

	12
	GO

	13
	

	14
	/****************

	15
	CREATE Silly Stored Procedures in the Schema

	16
	********************/

	17
	IF OBJECT_ID(N'test.EmployeeByLastName', 'P') IS NULL

	18
	EXEC sp_executesql N'CREATE PROCEDURE test.EmployeeByLastName as return 0'

	19
	GO

	20
	ALTER PROCEDURE test.EmployeeByLastName

	21
	@lName nvarchar(255)

	22
	AS

	23
	SELECT @lName = N'%' + @lName + N'%'

	24
	

	25
	select *

	26
	FROM HumanResources.vEmployee

	27
	WHERE LastName LIKE @lName

	28
	GO

	29
	

	30
	IF OBJECT_ID(N'test.EmployeeByFirstName', 'P') IS NULL

	31
	EXEC sp_executesql N'CREATE PROCEDURE test.EmployeeByFirstName as return 0'

	32
	GO

	33
	ALTER PROCEDURE test.EmployeeByFirstName

	34
	@fName nvarchar(255)

	35
	AS

	36
	SELECT @fName = '%' + @fName + '%'

	37
	

	38
	select *

	39
	FROM HumanResources.vEmployee

	40
	WHERE FirstName LIKE @fName

	41
	GO

	42
	

	43
	IF OBJECT_ID(N'test.EmployeeDepartmentHistoryByLastName', 'P') IS NULL

	44
	EXEC sp_executesql N'CREATE PROCEDURE test.EmployeeDepartmentHistoryByLastName as return 0'

	45
	GO

	46
	ALTER PROCEDURE test.EmployeeDepartmentHistoryByLastName

	47
	@lName nvarchar(255)

	48
	AS

	49
	SELECT @lName = N'%' + @lName + N'%'

	50
	

	51
	select *

	52
	FROM HumanResources.vEmployeeDepartmentHistory

	53
	WHERE LastName LIKE @lName

	54
	GO

	55
	

	56
	IF OBJECT_ID(N'test.EmployeeDepartmentHistoryByFirstName', 'P') IS NULL

	57
	EXEC sp_executesql N'CREATE PROCEDURE test.EmployeeDepartmentHistoryByFirstName as return 0'

	58
	GO

	59
	ALTER PROCEDURE test.EmployeeDepartmentHistoryByFirstName

	60
	@fName nvarchar(255)

	61
	AS

	62
	SELECT @fName = '%' + @fName + '%'

	63
	

	64
	select *

	65
	FROM HumanResources.vEmployeeDepartmentHistory

	66
	WHERE FirstName LIKE @fName

	67
	GO

	68
	

	69
	IF OBJECT_ID(N'test.ProductAndDescriptionByKeyword', 'P') IS NULL

	70
	EXEC sp_executesql N'CREATE PROCEDURE test.ProductAndDescriptionByKeyword as return 0'

	71
	GO

	72
	ALTER PROCEDURE test.ProductAndDescriptionByKeyword

	73
	@keyword nvarchar(255)

	74
	AS

	75
	SELECT @keyword = '%' + @keyword + '%'

	76
	

	77
	select *

	78
	FROM Production.vProductAndDescription

	79
	WHERE Name LIKE @keyword OR ProductModel like @keyword OR description LIKE @keyword

	80
	GO

Once you’ve got the procedures written, you just need to set up your PowerShell commands.
Step 2: Create PowerShell Jobs to Run the Procedures in Loops
These commands use PowerShell background jobs.
Even if you don’t know PowerShell, if you look at these commands you can pretty easily pick out where the 1 to 100 loop is, where the a to z loop is, and what commands are being run.
Since the jobs are running to create load in the background and I don’t care about collecting query results, I pipe the output all to Out-Null.
view source

print?
	01
	#test.EmployeeByLastName

	02
	Start-Job -ScriptBlock {Import-Module sqlps; foreach($_ in 1..100) {foreach ($_ in [char]"a"..[char]"z") {Invoke-Sqlcmd -Query "exec test.EmployeeByLastName '$([char]$_)'" -ServerInstance "YOURMACHINE\YOURINSTANCE" -Database AdventureWorks2008R2 | Out-Null }}}

	03
	

	04
	#"test.EmployeeByFirstName"

	05
	Start-Job -ScriptBlock {Import-Module sqlps; foreach($_ in 1..100) {foreach ($_ in [char]"a"..[char]"z") {Invoke-Sqlcmd -Query "exec test.EmployeeByFirstName '$([char]$_)'" -ServerInstance "YOURMACHINE\YOURINSTANCE" -Database AdventureWorks2008R2 | Out-Null }}}

	06
	

	07
	#"test.EmployeeDepartmentHistoryByFirstName"

	08
	Start-Job -ScriptBlock {Import-Module sqlps; foreach($_ in 1..100) {foreach ($_ in [char]"a"..[char]"z") {Invoke-Sqlcmd -Query "exec test.EmployeeDepartmentHistoryByFirstName '$([char]$_)'" -ServerInstance "YOURMACHINE\YOURINSTANCE" -Database AdventureWorks2008R2 | Out-Null }}}

	09
	

	10
	#"test.EmployeeDepartmentHistoryByLastName"

	11
	Start-Job -ScriptBlock {Import-Module sqlps; foreach($_ in 1..100) {foreach ($_ in [char]"a"..[char]"z") {Invoke-Sqlcmd -Query "exec test.EmployeeDepartmentHistoryByLastName '$([char]$_)'" -ServerInstance "YOURMACHINE\YOURINSTANCE" -Database AdventureWorks2008R2 | Out-Null }}}

	12
	

	13
	#"test.ProductAndDescriptionByKeyword"

	14
	Start-Job -ScriptBlock {Import-Module sqlps; foreach($_ in 1..100) {foreach ($_ in [char]"a"..[char]"z") {Invoke-Sqlcmd -Query "exec test.ProductAndDescriptionByKeyword '$([char]$_)'" -ServerInstance "YOURMACHINE\YOURINSTANCE" -Database AdventureWorks2008R2 | Out-Null }}}

Each command will start an asynchronous background job.
Step 3: Manage Jobs (if needed)
Once the jobs are running in the background, you may want to check on their status. You can do so by running:
view source

print?
	01
	get-job

if you want to remove a job from the list, you can use Remove-Job with the job number, or you can remove all jobs (whether or not they are running) with:
view source

print?
	01
	Remove-Job * -Force

If you want to see the output of a job, you can use Receive-Job– supply the jobnumber. If you’re troubleshooting and want to see errors, you probably want to remove | Out-Null from the command that starts the job, and use a fewer number of loops. Then you can can receive the job’s output and see any errors.
view source

print?
	01
	Receive-Job JOBNUMBER

Tags: Featured

image3.png

image1.gif

image2.gif

